Оценить:
 Рейтинг: 4.5

Органическая химия. Часть 2. Ароматические соединения

Год написания книги
2019
<< 1 2 3 4 5 6 7 >>
На страницу:
6 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

и Сu

, координируясь с галогеном в алкилгалогенидах, способствуют его более легкому элиминированию:

Роль катализатора, как и растворителя, проявляется и в связи с более тонкими особенностями механизма реакции. Различают два основных механизма нуклеофильного замещения: мономолекулярный S

1 и бимолекулярный S

2. При мономолекулярном замещении процесс протекает в две стадии. На первой, более медленной, происходит диссоциация связи С-Х в молекуле субстрата, в результате чего образуются карбокатион и анион уходящей группы. На второй, быстрой стадии карбокатион соединяется с нуклеофилом с образованием конечного продукта замещения:

Поскольку на скорость-определяющей (лимитирующей) стадии в реакции занята только одна молекула субстрата, скорость всего процесса зависит лишь от концентрации субстрата и отвечает кинетическому уравнению первого порядка:

v = k [RX]

В отличие от этого при бимолекулярном замещении реакция протекает фактически в одну стадию: нуклеофил атакует углеродный атом субстрата с тыла, со стороны, противоположной той, где находится уходящая группа. Процесс образования новой связи и разрыв старой происходит синхронно, через рыхлое переходное состояние, в котором углеродный атом из состояния sp

переходит в уплощенное состояние, близкое к sp

-гибридизации:

Скорость всего процесса, как легко заметить, в этом случае должна зависеть от концентрации как субстрата, так и реагента и отвечать уравнению реакции второго порядка:

Cуществует три основных доказательства реализации S

1 или S

2 механизма:

1) кинетическая зависимость скорости реакции от концентрации либо одного субстрата (S

1-механизм), либо от концентрации и субстрата, и нуклеофила (S

2-механизм);

2) обращение или сохранение стереохимической конфигурации углеродного атома, у которого протекает замещение. В случае S

2-реакции, как видно из приведенной выше схемы, нуклеофил занимает место, противоположное тому, где находилась уходящая группа, а остальные связи углерода как бы выворачиваются подобно зонтику при сильном ветре. Если углеродный атом, несущий уходящую группу, в молекуле субстрата хиральный, т. е. все четыре заместителя в нем разные, продукт реакции изменяет знак вращения на обратный. Это явление, открытое латвийским ученым Вальденом в начале ХХ в., получило название вальденовского обращения. В случае S

1-механизма вальденовского обращения в чистом виде не наблюдается, так как промежуточный плоский карбокатион с одинаковой вероятностью может атаковаться нуклеофилом и с одной и с другой стороны:

Впрочем, и при S

1-механизме возможно частичное обращение конфигурации. Это бывает в тех случаях, когда карбокатион образует с анионом тесную йонную пару, т. е. уходящая группа не уходит от карбокатионного центра слишком далеко, тем самым в некоторой степени мешая нуклеофилу подойти к углеродному атому со своей стороны. Кроме того, нередки случаи, когда реакция замещения протекает параллельно по обоим механизмам, и это также выражается в частичном обращении стереохимической конфигурации;

3) характерная зависимость реакционной способности субстрата от строения углеводородного радикала R. При реализации S

1-механизма, чем разветвленнее радикал R, тем легче протекает реакция. Для S

2-реакций картина прямо противоположная.

В случае S

2-реакций разветвленность алкильного радикала создает трудности для подхода нуклеофила. В случае же S

1-реакций такой проблемы нет, поскольку три заместителя при карбокатионном центре располагаются в одной плоскости и серьезных стерических препятствий для подхода нуклеофила не создают. Но главное же заключается в том, что третичные карбокатионы устойчивее вторичных, а последние в свою очередь устойчивее первичных – следствие делокализации положительного заряда за счет +I-эффекта алкильных групп:

Это обстоятельство существенно снижает активационный барьер для алкилгалогенидов изостроения и направляет для них реакцию по S

1-пути. Практически всегда реагируют по S

1-механизму метоксиметилхлорид CH

OCH

Cl и аллилгалогениды СН

=СН-СН

-Х, которые образуют резонансно-стабилизированные карбокатионы:

То же самое относится к трифенилметилхлориду (тритилхлориду), дифенилметилхлориду (бензгидрилхлориду) и бензилхлориду, реакционная способность которых изменяется в следующей последовательности (бензилхлорид частично реагирует и по S

2-механизму, который для него, однако, не является главным):

(C

H

)

C-Cl > (C

H

)

CH-Cl > C

H

CH

-Cl >> CH

-Cl

Реакции нуклеофильного замещения у насыщенного атома углерода сопровождаются рядом побочных процессов. Один из них – отщепление галогеноводорода от алкилгалогенида или воды от спиртов. При таком элиминировании продуктом реакции становится алкен. Различают два механизма элиминирования: E2 и Е1. Е2-Механизм реализуется как синхронный процесс, скорость которого зависит как от концентрации субстрата, так и нуклеофила:

Особенно легко подвергаются E2-реакциям вторичные и третичные алкилгалогениды. Так, изопропилбромид при действии этилата натрия в этаноле дает лишь 20 % продукта замещения, пропилен же образуется с выходом 80 %.
<< 1 2 3 4 5 6 7 >>
На страницу:
6 из 7