Оценить:
 Рейтинг: 4.5

Бомба для дядюшки Джо

Год написания книги
2012
Теги
<< 1 2 3 4 5 6 7 ... 29 >>
На страницу:
3 из 29
Настройки чтения
Размер шрифта
Высота строк
Поля

Напуганные бурей российского мятежа, лидеры европейских держав заговорили о мире. И в 1918 году в Компьенском лесу кайзеровская Германия подписала акт о своей полной капитуляции.

Пока по бескрайним российским просторам катился бунт, бессмысленный и беспощадный, израненная Европа принялась залечивать раны.

Возобновились и научные исследования.

В 1919 году Эрнест Резерфорд впервые в мире расщепил атомное ядро (тогда реакцию расщепления называли дезинтеграцией). Он облучал азот радиоактивными лучами, то есть альфа-частицами (ядрами гелия), мчавшимися с сумасшедшей, как казалось тогда, скоростью – 15 тысяч километров в секунду. Резерфорд понимал, что вероятность попадания хотя бы одной частицы в ядро азота чрезвычайно мала: из миллиона альфа-частиц всего лишь одна имела шанс угодить в приготовленную для неё микроскопическую мишень.

Но учёный терпеливо ждал.

И дождался. «Пуля» попала в цель!

Поглотив альфа-частицу, ядро азота выбросило из себя протон. В результате азот и гелий превратились в кислород и водород.

Английскому физику удалось то, о чём в средние века могли только мечтать неудачливые алхимики: совершить превращение одного элемента в другой! При этом (в полном соответствии с высказанным ранее предсказанием Резерфорда) выделялась энергия – это было тотчас зафиксировано приборами. Учёный окончательно убедился в том, что внутри атомов таятся невиданные энергетические запасы. Целые кладовые энергии!

Впрочем, произведя расчёты, Резерфорд пришёл к не очень обнадёживавшему выводу. Бесстрастные математические выкладки показывали, что в обозримом будущем использовать эту «энергию атома» вряд ли удастся – слишком нелёгким (почти невыполнимым) делом представлялось само расщепление атомного ядра.

Очень мала была «мишень». И совсем уж крошечной казалась летящая к ней «пуля».

Комментируя сложившуюся ситуацию, Альберт Эйнштейн сказал, что вероятность попадания в атомное ядро точно такая же, как при попытке подстрелить в кромешной тьме птицу из летящей стаи. Особенно когда птиц в этой стае совсем немного.

Впоследствии Лев Ландау дал ещё более популярное разъяснение:

«Для ничтожно малой альфа-частицы, летящей внутри вещества, расстояния между атомами, между ядрами и окружающими их электронами так велики, что вероятность попадания её в какое-нибудь ядро крайне сомнительна. Представьте себе лес, где каждое дерево находится от другого в пяти километрах. Можно ли попасть снарядом в какое-нибудь дерево без прицела? Ясно, что при этих условиях в лучшем случае удастся вызвать одну ядерную реакцию с помощью миллиона частиц…

Положение выглядело настолько безнадёжно, что физики долгое время относились к перспективе использования внутриатомной энергии примерно так же, как к проблеме вечного двигателя».

Однако учёные были терпеливы. Они углубились в раздумья.

Если, говорили физики, бессмысленно стрелять по ядрам из «ружья», значит, на атомную «охоту» надо брать с собой скорострельный «пулемёт».

И тут немецкий учёный Фридрих Хоутерманс подлил масла в огонь, выдвинув (в 1929 году) гипотезу о ядерном или, точнее, о термоядерном происхождении звёзд. В небесных светилах, заявил он, должны вовсю бушевать взрывы немыслимой мощи.

Но если атомная энергия клокочет в звёздах, почему не попытаться получить её на Земле? В каком-нибудь укромном изолированном месте?

Так или примерно так рассуждали тогда в научном мире очень многие.

И в том же 1929 году два молодых физика – американец Эрнест Лоуренс и Лео Сцилард из Венгрии – независимо друг от друга придумали тот самый «пулемёт», который способен был заменить прежнее «ружьё» для «охоты» на атомы.

Учёные предложили «обстреливать» микроскопические атомные «мишени» не отдельно летящими ядерными «пулями», а мощными пучками альфа-частиц. Или потоком протонов. Предварительно разогнав их до невероятно больших скоростей. С помощью электромагнита, в специальном ускорителе.

В 1931 году Эрнест Лоуренс вместе с другим американцем Милтоном Ливингстоном построил такой прибор. Его назвали циклотроном.

У физиков начало складываться ощущение, что ещё чуть-чуть, и двери в кладовые внутриатомной энергии наконец-то гостеприимно распахнутся.

Но не тут-то было!

Ведь для ускорения разгоняемых частиц требовались колоссальные энергетические затраты. Гораздо большие, чем те, что намеревались получить от самой ядерной реакции.

Ситуация казалась безнадёжной.

Но…

Лев Ландау писал:

«Хитрая природа, оказывается, только дразнила физиков. Там, где всё казалось ясным, вдруг открылись новые, неожиданные явления».

Это случилось в самом начале 30-х годов. Элемент бериллий облучали альфа-частицами французские физики Ирен Кюри и Фредерик Жолио. Облучали, облучали, облучали.

И вдруг возникло очередное «лучистое» явление: бериллий начал светиться!

В чём причина этого необычно странного свечения, попытался разобраться англичанин Джеймс Чедвик. В 1932 году он выяснил, что вылетающие из бериллия «осколки» не имеют электрического заряда, то есть они абсолютно нейтральны. И назвал эти частицы нейтронами.

В том же 1932 году молодой советский учёный Дмитрий Иваненко, работавший в Ленинградском физико-техническом институте, предложил рассматривать нейтральные нейтроны и положительно заряженные протоны в качестве тех «кирпичиков», из которых и сложены атомные ядра.

Теория Иваненко логично объясняла порядок расположения элементов в периодической таблице Менделеева. Она легко отвечала на вопрос, почему, допустим, элемент гелий, атомный вес которого 4, имеет порядковый номер 2. А потому, разъяснял Иваненко, что место элемента в периодической таблице определяется зарядом. В ядре гелия два протона и два нейтрона. Значит, заряд ядра – плюс 2, отсюда – и место второе.

То же самое происходит с ураном. Его атомный вес – 238, стало быть, в ядре находится 92 протона и 146 нейтронов. Поэтому заряд ядра (и номер места в периодической таблице) – 92.

Теорию советского физика научный мир тотчас взял на вооружение.

В 1935 году за своё открытие Джеймс Чедвик получил Нобелевскую премию. В том же году, правда, за другое научное достижение стали Нобелевскими лауреатами и супруги Жолио-Кюри. Дмитрия Иваненко удостоят всего лишь Сталинской премии. За совсем другие заслуги. И много лет спустя – в 1950-ом.

Но, раз уж речь пошла о российском вкладе в дело изучения атомного ядра, приглядимся повнимательней к тому, какое участие в громких ядерных открытиях принимала страна, издавна называвшаяся Россией, а потом переименовавшая себя в Советский Союз.

Атом и физики-россияне

Пожалуй, самым знаменитым российским физиком начала ХХ века был Пётр Николаевич Лебедев, окончивший в 1891 году Страсбургский университет. Известно много его работ в области электромагнитного и светового излучения, магнетизма вращающихся тел и природы межмолекулярных сил. Но самым знаменитым достижением Лебедева, заставившим ахнуть учёных всего мира, было измерение давление света.

Однако учёный рано ушёл из жизни – в возрасте всего лишь 46 лет. Это случилось в 1912-ом. Достойных преемников, которые могли бы продолжить его исследования, Лебедев не оставил. Хотя способных физиков в тогдашней России было немало.

Один из них – Абрам Фёдорович Иоффе.

Он родился на Полтавщине в 1880 году. В 1902-ом, окончив Петербургский технологический институт, отправился в Германию, в Мюнхенский университет, где в течение нескольких лет работал (сначала практикантом, а затем ассистентом) в лаборатории самого Вильгельма Рентгена.

В 1906 году Иоффе вернулся на родину и стал преподавать в Петербургском политехническом институте.

В 1918-ом, когда российская столица Петроград ещё не пришла в себя от небывалых бурь двух революций, Абрам Фёдорович сумел добиться создания (при Наркомздраве РСФСР) Государственного рентгенологического и радиологического института. И тотчас организовал при нём физико-технический отдел.

В 1921-ом этот отдел выделился в самостоятельное образование – Государственный физико-технический рентгенологический институт (ГФТРИ) при Наркомпросе РСФСР. Его директором назначили Иоффе, который к тому времени стал уже академиком. Было ему тогда всего сорок лет с небольшим, а его сотрудникам – раза в два меньше. Поэтому директора петроградского «рентгеновского» стали в шутку называть «папой», а его институт – «детским садом папы Иоффе».

А теперь пришла, наконец, пора рассказать о главных героях нашего повествования. Двое из них к науке физике и к атомным ядрам никакого отношения не имели. И, тем не менее, в дальнейшем нашем рассказе им предстоит сыграть первые роли.

Первый наш герой, Иосиф Джугашвили, был в начале российской революции третьестепенным партийным функционером. Соратники по большевистскому подполью называли его Кобой или товарищем Сталиным. В первом ленинском Совнаркоме ему был доверен пост народного комиссара по делам национальностей. Но широким народным массам в 1918 году имя «чудесного грузина», как Иосифа Виссарионовича однажды назвал Ленин, не говорило ни о чём.

И уж тем более никто не знал второго нашего героя, 19-летнего кавказца, с отличием окончившего в 1917-ом Бакинское механикостроительное училище и получившего диплом техника-архитектора. Как многих молодых людей той поры его увлекла романтика революционного движения, и он принял активное участие в подпольной работе, которую вели в Закавказье революционеры самых разных мастей. Была у юноши ещё одна страстная мечта – стать инженером. И он поступил в Бакинский политехнический институт. Звали студента Лаврентий Берия.

Когда в Закавказье установилась советская власть, инициативного молодого человека привлекли к чекистской работе, и он с головой погрузился в увлекательнейшую из профессий – оперативного работника спецслужб. В 1920-ом Берия уже служил помощником начальника Бакинского ЧК. В конце 1921-го работал следователем в ЧК Грузии, а с конца 1922-го занимал пост заместителя начальника грузинского ЧК.
<< 1 2 3 4 5 6 7 ... 29 >>
На страницу:
3 из 29