Оценить:
 Рейтинг: 0

Цифровая трансформация государственного управления. Датацентричность и семантическая интероперабельность

Год написания книги
2019
Теги
<< 1 ... 14 15 16 17 18 19 >>
На страницу:
18 из 19
Настройки чтения
Размер шрифта
Высота строк
Поля

«Эволюция целевой системы связывается в системной инженерии с прохождением последовательности определенных стадий, увязанных с совокупностью управленческих решений, для обоснования которых используются объективные свидетельства того, что система на принятом уровне материализации является достаточно зрелой для перехода от одной стадии жизненного цикла к другой. При этом на каждом этапе жизненного цикла система имеет относительно стабильный набор характеристик. При моделировании жизненного цикла используются совокупности процессов жизненного цикла»[147 - Системная инженерия. Гуманитарная энциклопедия [Электронный ресурс] // Центр гуманитарных технологий, 2010–2016 (последняя редакция: 30.10.2016), http://gtmarket.ru/concepts/7110. Текст статьи: © Батоврин В. К., Голдберг Ф. И., Александров А. Н. Подготовка электронной публикации и общая редакция: Центр гуманитарных технологий.].

Формально в ГОСТ Р 57193–2016 [15н] процесс (process) определен как совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующих входы в выходы. При этом выделены[148 - Указанная классификация характерна для ГОСТ Р 57193-2016. Такие организации, как NASA, SAE, EIA и другие используют свои классификации процессов жизненного цикла.] 4 группы процессов жизненного цикла:

• процессы соглашения (Agreement Processes);

• процессы организационного обеспечения проекта (Organizational Project-Enabling Processes);

• процессы проекта (Technical Management Processes);

• технические процессы (Technical Processes).

Процессы жизненного цикла системы в стандарте ГОСТ Р 571932016 описаны относительно системы, которая составлена из ряда системных элементов для взаимодействия, каждый из которых может быть реализован таким образом, чтобы выполнить соответствующие ему заданные требования.

Следующие положения являются основными относительно характеристик рассматриваемой системы:

a) определенные границы характеризуют значимые потребности и практические решения;

b) существуют иерархические или иные отношения между системными элементами;

c) какая-либо сущность на любом уровне в рассматриваемой системе может быть рассмотрена как система;

d) система включает интегрированное, определенное множество нижестоящих системных элементов;

e) свойства характеристик в границах системы определяются результатами взаимодействий между системными элементами;

f) люди могут рассматриваться как пользователи внешние к системе и как системные элементы (т. е. операторы) в пределах системы;

g) система может быть рассмотрена в изоляции как некая сущность, например, как продукт или набор функций, способных к взаимодействию с окружающей средой, т. е. как множество услуг.

Концепциям, принципам и методам системной инженерии посвящено значительное количество работ[149 - Обзорный доклад по этим вопросам был сделан 11.02. 2015 года профессором В.К. Батовриным на 100-м заседании INCOSE RUS, https://incose-rus.weebly.com/systems_engineering_essentials.html. Там же можно найти список литературы.], которые, безусловно, оказали большое влияние на ее развитие. Хотя рассмотрение оснований системной инженерии выходит далеко за пределы монографии, следует обратить внимание на то, что в современной «системной инженерии рассматриваются не любые, а именно большие (крупномасштабные) и сложные системы. Общепризнанной границы, разделяющей большие и сложные системы, нет. Однако отмечается, что термин „большая система“ характеризует многокомпонентные системы, включающие значительное число элементов с однотипными многоуровневыми связями. Большие системы – это пространственно-распределенные системы высокой степени сложности, в которых подсистемы (их составные части) также относятся к категориям сложных. <…> В свою очередь, термин „сложная система“ характеризует структурно и функционально сложные многокомпонентные системы с большим числом взаимосвязанных и взаимодействующих элементов различного типа и с многочисленными и разнородными связями между ними. Сложные системы отличаются многомерностью, разнородностью структуры, многообразием природы элементов и связей, организационной разносопротивляемостью и разночувствительностью к воздействиям, асимметричностью потенциальных возможностей осуществления функциональных и дисфункциональных изменений. При этом каждый из элементов подобной системы может быть также представлен в виде системы (подсистемы)» [55].

Такой подход к рассмотрению систем как совокупности иерархически организованных систем (подсистем) хорошо исследован в теории систем [64] и широко используется в практике проектирования. При этом отмечается, что большие технические системы «с иерархической структурой являются многоуровневыми многокритериальными системами, обладающими сложным (с наличием неопределенности) поведением, и характеризуются усложнением постановки и решения оптимизационных задач» [71].

Проблема сложности является ключевой для системной инженерии и теории систем. Ее исследование началось в середине 60-х годов [57, 66], а к 80-м годам «сложилась специальная научная дисциплина, названная теорией сложности. В 1984 году был основан Институт Санта Фе в Нью-Мексико, а двумя годами позже – Центр изучения сложных систем в университете штата Иллинойс» [72]. Интеграция гетерогенных сложных систем приводит к образованию систем с труднопредсказуемым поведением и неожиданными свойствами, а внесение изменений в процессе эксплуатации постоянно повышает их сложность. Принципы системной инженерии и практика их применения также активно развиваются, отвечая на эти усложнения.

Группы систем, в которых отдельные системы могут существовать автономно – поскольку были разработаны и функционируют независимо друг от друга – и при этом представлять собой полноценную целевую систему, получили название система систем (System of Systems, SoS). Основой для исследований в области SoS являются принципы системной инженерии. Однако ряд существенных особенностей SoS привел к возникновению новой области системной инженерии, которая должна обеспечить управление жизненным циклом системы систем, при том, что каждая составляющая система SoS может находиться на своей стадии жизненного цикла.

Исследования свойств SoS c 1970-x годов [1] проводились индивидуальными исследователями до начала 2000-х годов, когда системы систем стали предметом серьезного внимания ведущих исследовательских организаций [19]. В период 2008–2009 гг. в различных работах, например [33], был представлен ряд определений SoS, не все из которых были положительно приняты мировым сообществом. Современное определение SoS, объединившее более ранние определения различных авторов, дано в глоссарии SEBoK[150 - http://www.sebokwiki.org/wiki/System_of_Systems_(SoS)_(glossary)]:

«SoS – это интеграция конечного числа составляющих систем, которые являются независимыми и функционирующими, объединенных в сеть на определенный период времени для достижения определенной высшей цели».

А на десять лет раньше, в 1998 году, были сформулированы [37] базовые характеристики SoS:

1) эксплуатационная независимость отдельных систем – SoS состоит из систем, интегрированных в SoS, независимых и пригодных к работе по отдельности;

2) административная независимость отдельных систем – системы, составляющие SoS, работают независимо ради достижения поставленных перед ними целей, которые могут отличаться от назначенных SoS;

3) территориальная распределенность – системы, входящие в состав SoS, могут находиться далеко друг от друга и обмениваться между собой только информацией;

4) эмерджентное[151 - Эмерджентность в теории систем – наличие у какой-либо системы особых свойств, не присущих ее подсистемам и блокам, а также сумме элементов, не связанных особыми системообразующими связями; несводимость свойств системы к сумме свойств ее компонентов; синоним – «системный эффект», http://ru.wikipedia.org/wiki/Эмерджентность]поведение – ожидание синергетического эффекта является главной причиной объединения отдельных независимых систем. SoS может создаваться для осуществления цели и выполнения функций, не обязательно свойственных какой-либо из входящих в ее состав систем;

5) эволюционное развитие – входящие в состав SoS системы, их компоненты, структуры, функции и цели изменяются по мере накопления опыта работы с системой.

Причем эксплуатационная и административная независимость определены как две основные отличительные характеристики для применения термина «система систем». Система, которая не проявляет этих двух характеристик, не считается SoS вне зависимости от сложности и географического распределения ее компонентов. Многие авторы [19] объединяют эти две характеристики, говоря об автономности как способности составляющих SoS систем делать независимый выбор, включая административную и эксплуатационную независимость. При этом эмерджентность также рассматривается как неотъемлемая характеристика SoS, ради которой, собственно, и объединяются составляющие системы. Однако SoS могут проявлять не только предсказуемую эмерджентность: в силу автономности составляющих систем возможно возникновение непредвиденных последствий и нежелательного поведения. Своевременное выявление и пресечение такой непредвиденной эмерджентности является важной задачей системной инженерии SoS.

Характеристика автономности определяет, по нашему мнению, принципиальное отличие системы систем от системы из подсистем, которое состоит в том, что у каждой системы в SoS есть свой владелец («хозяин»), тогда как у системы из подсистем есть только один владелец («хозяин») всей системы. Это свойство (наличие владельца системы), которое традиционно не учитывается в теории систем (как системы из подсистем), вносит новое качество на различных уровнях. Например, для ведомственной системы владельцем может быть ведомство (заказчик или оператор), для web-приложения – провайдер сервиса, для средства обеспечения доступа – пользователь.

Нужно отметить, что три приведенные выше ключевые характеристики – эксплуатационная и административная независимость, а также эмерджентность – закреплены новой (действующей) редакцией международного стандарта по системной инженерии ГОСТ Р 57193–2016 [15н]. Причем стандарт также обращает внимание на сложную динамику взаимодействия составляющих систем, которая может приводить к непредсказуемой эмерджентности: «Главной характеристикой SoS являются неожиданные случаи, т. е. непредвиденные эффекты на уровне SoS, отн сенные к сложной динамике взаимодействия составляющих систем. В SoS составляющие системы преднамеренно рассматриваются в их комбинации с тем, чтобы получить и проанализировать результаты, невозможные к получению от единичных систем. Сложность составляющих систем и факт того, что они, возможно, были разработаны безотносительно к их роли в SoS, может привести к новым, неожиданным поведениям. Определение и обращение к непредвиденным эмерджентным результатам – это особенная сложная проблема в инженерии SoS».

Кроме приведенных выше характеристик, многие исследователи [19] считают важными также следующие характерные особенности SoS:

• Принадлежность – составляющие системы имеют право и возможность выбирать принадлежность к SoS исходя из собственных потребностей. Существование SoS повышает значимость цели составляющей системы, возвеличивает роль этой системы, поскольку ее принадлежность делает достижение общей цели SoS более быстрым и эффективным.

• Связанность – возможность оставаться подключенными к другим составляющим системам. Необходимо создание связанности, или, другими словами, достижение интероперабельности между унаследованными системами и, возможно, добавленными новыми системами в SoS.

• Разнообразие – свидетельство явной гетерогенности. SoS должна быть, по необходимости, весьма разнообразной по своим возможностям по сравнению с довольно ограниченным функционалом составляющих систем. Существует фундаментальное различие между основанной на требованиях, управляемой конструкцией обычной системой для определенной предметной области и основанной на возможностях SoS, которая должна проявлять значительное разнообразие функций как необходимый ответ на высокую изменчивость потребностей, постоянные неожиданности и деструктивные новации.

Со временем было предложено добавить еще две важных характеристики SoS:

1. «Самоорганизация. SoS имеет динамическую организационную структуру, способную реагировать на изменения в окружении и изменения поставленных целей и задач.

2. Адаптация. Как и развивающаяся организация, сама структура SoS может быть динамичной и реагировать на внешние изменения и восприятие среды» [61].

Следует обратить внимание, что SoS необязательно формируется на постоянной основе, она может быть необходима для интеграции систем и сетей с какими-либо конкретными целями и на определенный период. Причем способы организации совместной работы систем, входящих в SoS, могут существенно различаться.

В 2008 году Министерство обороны США выпустило руководство по системной инженерии специально для SoS [46], в котором (со ссылкой на работы ряда исследователей [37, 10]) было выделено четыре категории подобных систем:

• виртуальная – в виртуальной SoS нет центрального пункта управления и единой согласованной цели. Поведение, характерное для крупномасштабных систем, вероятно и, возможно, даже желательно, но предполагается, что в SoS такого типа для поддержания должны использоваться сравнительно слабо выраженные механизмы;

• коллаборативная – входящие в состав коллаборативной SoS отдельные системы взаимодействуют на более или менее добровольной основе для достижения согласованных общих целей. Стандарты применяются, но нет никакого центрального органа, который контролировал бы их соблюдение. Основные игроки сообща решают, нужно ли предоставлять (и если нужно, то как предоставлять) обслуживание, обеспечивая тем самым некоторую степень следования стандартам регулирования и обслуживания;

• общепризнанная – у общепризнанной SoS имеются осознанные цели, назначенный руководитель и выделенные ресурсы. Однако у составляющих ее систем по-прежнему есть независимые владельцы, цели, финансирование, подходы к разработке и обеспечению функционирования. Для внесения изменений в каждую отдельную систему необходимо добровольное сотрудничество между ней и SoS;

• целевая – целевыми называются интегрированные SoS, которые создаются и управляются для достижения конкретных целей. Они централизованно управляются на протяжении длительного срока службы для выполнения как ранее поставленных, так и новых задач, которые могут представлять интерес для владельцев системы. Составляющие системы сохраняют возможность работать независимо, но в нормальном режиме их работа подчинена общей цели[152 - Заметим, что в ГОСТ Р 57193-2016 эти категории SoS названы соответственно виртуальная, объединенная, познаваемая и руководимая.].

Существенно различная организация взаимодействия в SoS перечисленных категорий не может не сказываться на их характеристиках. Например, при переходе от виртуальных или коллаборативных SoS к более «жестко» организованным общепризнанным или целевым SoS следует ожидать возрастания зависимости SoS в целом от изменений составляющих систем. Однако внесение изменений в таких SoS производится по согласованию заинтересованных сторон, что дает возможность снизить непредсказуемую эмерджентность.

Самым известным примером SoS является интернет. С точки зрения провайдеров, обеспечивающих магистральную передачу данных и последнюю «милю», – это коллаборативная SoS. Провайдеры взаимодействуют на более или менее добровольной основе, вступая в соответствующие договорные отношения, применяют стандарты и обеспечивают обслуживание клиентов. При этом они остаются независимыми и не имеют какого-либо общего руководителя.

Вместе с тем компании и индивидуальные пользователи имеют возможность создавать сетевые сервисы, используя не только инфраструктуру интернета, но и опубликованные сервисы других владельцев. Например, вставляя чужие фреймы в свой публичный или корпоративный портал. По сути, таким способом формируется множество виртуальных SoS со слабоорганизованными взаимодействиями: действительно, ведь в нашем примере ответственность за работоспособность «чужого» сервиса лежит на том, кто его вставил в свой портал, если нет специального контракта с владельцем сервиса. То есть в данном случае репутация владельца становится решающей. Естественно, такая виртуальная SoS будет существовать в течение того временного отрезка, на котором она решает поставленную задачу.

Именно виртуальные и коллаборативные SoS становятся «главными» в цифровом мире. И если 20 лет назад разработки SoS были прерогативой оборонных ведомств, то сейчас можно привести множество примеров SoS из ежедневной жизни и различных предметных областей:

• «транспорт – управление воздушным движением, Европейская железнодорожная сеть, интегрированное управление наземным транспортом, грузовым транспортом, управление скоростными магистралями и космические системы;

• энергетика – умные сети, умные дома и интегрированное производство/потребление;

• здравоохранение – системы управления областными учреждениями, аварийно-спасательными службами и управления персональным здоровьем;
<< 1 ... 14 15 16 17 18 19 >>
На страницу:
18 из 19