Оценить:
 Рейтинг: 4.6

История и философия науки

Год написания книги
2014
<< 1 2 3 4 5 6 >>
На страницу:
3 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля
В психологии психоанализ придал эксперименту новые черты. Психоанализ заставил принципиально по-новому относиться к больному как объекту исследования. Это проявилось в заинтересованном отношении врача-исследователя к пациенту как к объекту исследования и было связано с полным погружением психоаналитика в ситуацию, которая спровоцировала состояние больного. Поэтому и возникает представление о субъективности всей психоаналитической процедуры. Психоаналитик не может отстраненно, сугубо объективистски устанавливать причины болезни и находить пути их лечения.

Биология в первые десятилетия ХХ в. становится преимущественно экспериментальной наукой благодаря возникновению экспериментальной генетики, которая становится ядром биологии. Своеобразие биологических исследований, какой бы степени теоретичности они ни достигали, заключается в том, что они неизбежно привязаны к жизненным и практическим запросам человека и уже изначально носят прикладной характер. И это является свидетельством неустранимости субъекта из процедур формирования объекта исследования и механизмов его изучения. Объект исследования создается с учетом практических интересов и потребностей субъекта, поэтому, например, генетика разветвляется на медицинскую генетику, генетику растений, животных и др. М. Блок отстаивает активную роль субъекта в историческом исследовании, когда замечает, что историк не должен склоняться перед фактами, поставляемыми источниками. По его мнению, исследователь «провоцирует опыт». И вся его аргументация направлена на признание активной роли субъекта в историческом исследовании.

1.5.3. Картина мира неклассической науки. Картина мира неклассической науки не является целиком рациональной – она включает в себя и иррациональную составляющую. Рационально то, что соразмерно человеческому разуму, соответственно, иррациональное ему несоразмерно.

В лице Фрейда психологическая наука вносит в неклассическую картину мира в качестве объекта исследования бессознательное Оно, т. е. иррациональное. Оно – хаотичное, не имеющее организации, связанное с инстинктами, существует вне логических законов и вне морали. Иррациональное входит и через микромир: элементарные частицы не локализованы, они размыты в пространстве, как и волны, являются одновременно и частицами и волнами; в этом мире действует принцип неопределенности, и объективный характер имеет случайность, в которой присутствуют хаос и беспорядок.

Н. И. Лобачевский фиксирует тему иррационального даже в математике: он признает, что мы знаем только Здесь и Теперь, а за ними есть Там и Тогда, о которых мы ничего не знаем, поэтому возможный подступ к ним назван Лобачевским «воображаемой геометрией».

Следовательно, иррациональные признаки картины мира неклассической науки высвечиваются только на фоне рациональных характеристик картины мира классической науки. Они иррациональны, поскольку не вписываются в критерии и признаки существовавшей ранее классической формы рациональности. В неклассической картине мира иррациональное есть проявление естественных сторон существования мира и лежит в границах, доступных самой науке.

Была критически пересмотрена по целому ряду моментов господствовавшая механистическая картина мира. Подвергается критике основополагающий принцип классической науки – принцип лапласовского детерминизма, что связано с признанием объективности случайных процессов. В мире случайности законы носят вероятностно-статистический характер. Неклассическая физика, отрицая традиционное представление о причинности в духе механистического детерминизма, одновременно сохраняет саму суть причинного объяснения, но уже в форме вероятностно-статистических закономерностей. В биологии фактор случайности объективного порядка признан решающим при возникновении, а также существовании и эволюции живого в условиях Земли. Элементарным и основным фактором эволюции считается мутационный процесс. В биологических науках появляются понятия, свойственные неклассической физике, как то вероятностно-статистические закономерности, волновые процессы и пр. В социально-гуманитарных теориях неклассической направленности вопрос о причинности имеет особую значимость. Так, М. Блок, признавая сам факт действия причинности в историческом мире, отрицает ее линейный и однозначный характер, обосновывая многообразие возможностей в истории, каждая из которых имеет свою степень вероятности; отстаивает объективный характер в истории случайных событий, спонтанности. Итак, пересмотр принципа детерминизма связан с выявлением вероятностностатистических закономерностей в мире случайного, неопределенного, многофакторного, включающего в себя разнообразные возможности.

Фундаментальным принципом неклассической научной картины мира является эволюционизм. В неклассической науке эволюционизм получил научное обоснование и обретает всеобщий характер. В классической астрономии Вселенная представала как статичная застывшая система. Опытным основанием эволюционного подхода в астрофизике являются обнаружение ядерной энергии как преобладающего вида энергии в масштабах Вселенной, необратимый расход которой и означает эволюцию; открытие расширения Вселенной, а также так называемого «реликтового» излучения – следов прошлого состояния Вселенной. Теоретическим фундаментом астрофизики являются основные физические теории, и прежде всего теория тяготения Эйнштейна.

В биологии неклассического периода эволюционистские представления также получили научное обоснование. Соединение дарвиновской теории эволюции с экспериментальной генетикой привело к становлению синтетической теории эволюции. Элементарной структурой эволюции признана популяция, элементарными эволюционными явлениями – изменение генетического состава и элементарными эволюционными факторами – мутации и популяционные волны; научно обоснован прогрессивный ход эволюции в живом мире.

Новые черты приобретает принцип системного строения мира. Неклассическая физика обнаружила сложное строение микромира – критерий элементарности относителен, соответственно, в качестве особого рода систем предстают и сами элементарные частицы; можно говорить о мультисистемности микромира. Астрофизика открыла мультисистемность мегамира (самые значительные для земного человека системы – Солнечная система, Галактика, Метагалактика и Вселенная). Способами взаимосвязи элементов являются неизвестные в классической науке силы – четыре типа основных взаимодействий: сильное, электромагнитное, слабое и гравитационное. В противовес суммативности механических систем, система неклассического типа меняется не за счет перемены мест или количественного изменения элементов системы, а через их качественные изменения и внутренние трансформации и взаимопревращения. Применительно к живой природе элементарной составляющей является ген, который и сам предстает как сложная система, поэтому в биологии понятие элементарности носит относительный характер, а значит, и в ней также можно говорить о мультисистемности. Выделяются молекулярно-генетический, клеточно-онтогенетический, популяционный и биосферный уровни системного строения. В органической природе появляется принципиально новый тип системы – код как «потенциальная структура». Способами взаимосвязи элементов систем различных уровней живого мира являются механизмы наследственности и изменчивости. Любой живой организм – это открытая, саморегулируемая и самовоспроизводящаяся гетерогенная система. Системный подход становится важнейшим в общественных и гуманитарных науках. Так, структуралисты, к какому бы материалу они ни обращались (бессознательное, телесное, мифы, религия, системы родства, экономика) – всюду они обнаруживают язык знаков, языковые структуры. К примеру, семиосфера Ю. М. Лотмана – это структура структур в пределах человеческой культуры. Таким образом, объекты всех основных подсистем неклассической науки предстают как системы немеханического типа.

Основополагающим для неклассической картины мира является принцип относительности. Его, как правило, связывают с теорией относительности А. Эйнштейна. Но идея относительности имеет и более широкий смысл. Сам Эйнштейн, раскрывая смысл своей теории, трактовал ее как признание относительности событий физического мира, зависимости законов природы от координатных систем и гравитационных полей. Идея относительности в математике нашла свое отражение в создании неевклидовых геометрий. В неклассической логике шла дискуссия об абсолютности/относительности законов логики. Логические законы носят абсолютный характер, если мир единственен – таков, каков он есть, и только. Но в отношении логических законов именно в этот период возникает вопрос об условиях мышления. «Земная логика» сопоставляется с логикой воображаемой. В биологических науках Вернадский вводит понятие живого вещества (в отличие от понятия организма) для сближения живой природы с неорганическим миром. В реальности живое не может быть абсолютно отгорожено от того, что мы называем неживым, мертвым. Живое и мертвое на планете Земля взаимозависимы: живое обладает геохимическими свойствами, т. е. свойствами неорганической природы; в свою очередь, мир так называемой «мертвой природы» во многом является продуктом деятельности живого. Следовательно, принцип относительности в биологической науке заключается в признании относительности живого и косного вещества, в их взаимозависимости и взаимопереходах. В социально-исторических науках принцип относительности не нуждается в особом доказательстве. Социальная ангажированность, идеологическая направленность – вот основания для относительности этих знаний.

Итак, принцип относительности присутствует во всех основных подсистемах неклассической науки, и заключается он в отрицании абсолютности изучаемого объекта, признании его зависимости от системы отсчета, условий и обстоятельств исследования; относительность также означает возможность данного объекта переходить в свое иное.

К числу принципов неклассической научной картины мира должен быть отнесен и энергетизм. Как принцип объяснения физических явлений он вытекает из фундаментального физического закона – закона сохранения энергии, включившего в себя фундаментальный закон классической физики – закон сохранения массы. Идеолог энергетизма В. Оствальд возводил понятие энергии в мировоззренческий принцип, который он достаточно последовательно распространил на химию. Энергия – это составная часть субстанции; вещество и энергия обладают одинаковой степенью бытия. Это было настолько важно для химии, что возникла новая область химической науки, изучающая корреляцию вещества и энергии, фотохимия. Энергетический подход применим и к миру живого. Биосфера представляет собой энергетический экран между Землей и космосом, посредством которого космическая (солнечная) энергия трансформируется в земное органическое вещество. Важнейший закон земных процессов – превращение «абиотической» энергии (и, соответственно, вещества) в биоэнергию и обратно. Здесь присутствует и своеобразная форма сохранения энергии, которая становится предметом исследования такой пограничной области науки, как биоэнергетика. В психоанализе, исследовавшем взаимопереходы сознательного и бессознательного, понятие энергии было столь важно, что З. Фрейд построил «энергетическую модель психики». В блоке социально-гуманитарных наук также использовался энергетический подход. Так, русский космист А. Л. Чижевский исследовал исторические события с точки зрения трансформации космической энергии в социально-психическую энергию масс, выливающуюся в те или иные исторические действия. Если обратиться к искусствоведению, мифологии, религиоведению и другим наукам о духе, то и здесь использовался энергийный подход. Для Э. Кассирера понятие энергии необходимо для того, чтобы выразить активность человеческого духа, который создает мир культуры. Творческая энергия как нечто «внутреннее» объективируется в языке. Энергия внутреннего – это уже не биологическая или психическая энергия, а энергия духовная. Обращение к основным подсистемам науки позволяет сделать вывод, что в неклассический период энергетизм был общенаучным методологическим подходом, позволявшим выделить энергетическую составляющую в неорганической и живой природе, а также в мире духовных явлений.

1.5.4. Постнеклассическая наука и ее картина мира. Постнеклассическая наука пока не имеет четких временных границ и однозначных характеристических признаков – с ней связывают те принципиальные новации, которые не укладываются в признаки неклассической науки; этим объясняется и название – постнеклассическая наука. Во второй половине ХХ – начале ХХI в. происходят радикальные изменения как в основаниях науки, так и в картине мира в целом. Постнеклассическая наука своим формированием не отменяет неклассическую – они сосуществуют как разновидности науки в современном пространстве.

Если в основании классической и неклассической науки лежит «натурный эксперимент», то в постнеклассической науке появляется компьютерный эксперимент. Отличия их в том, что натурный эксперимент как метод классической и неклассической науки был подчинен принципу реальности, поскольку нацелен на получение фактов, тогда как в компьютерном эксперименте факт перестает быть главным критерием реальности – создается многомерная структура достоверности. В компьютерном эксперименте исследуемый объект конструируется на базе программы моделирующей системы, тем самым он обретает черты виртуального объекта, проявляющего свои свойства и функциональные зависимости в виртуальной реальности. Формирование виртуальных объектов, виртуального пространства, виртуальной реальности началось с 40–50-х гг. ХХ в., когда революционные по своей сути информационные технологии, кибернетические системы, а также основанная на них вычислительная техника, дополненные созданной в 1970-е гг. Сетью и персональными компьютерами, позволили продуцировать возможные и невозможные миры. Исследование, погруженное в конструирование возможных и невозможных миров, создает принципиально новое основание науки.

Существенной новацией постнеклассической науки является вхождение в круг ее исследований таких объектов, которые получили название «человекоразмерных» (В. С. Степин). Под ними понимаются объекты, существование которых все в большей степени напрямую зависит от деятельности современного человечества в целом (как, например, экологические или человеко-машинные системы, биосфера Земли, ближний Космос или так называемые «глобальные проблемы»), либо объекты, существование которых способно повлиять на биологическую природу человека (например, объекты генной инженерии). «Человекоразмерные» объекты ставят перед научным сообществом не только нравственно-этические, но и правовые проблемы – возникает необходимость введения системы запретов и допущений в сфере научных исследований. Тем самым на формирование объекта науки значительное влияние оказывают вненаучные факторы.

Постнеклассическую науку ряд исследователей отождествляет с постнеклассическим типом рациональности (термин введен В. С. Степиным). При таком подходе постнеклассическая наука рассматривается через призму стиля научного мышления, особенностей научного знания. Поскольку компьютерный эксперимент связан с созданием и разрушением возможных и невозможных миров и позволяет проигрывать самые разнообразные сценарии, то в мышлении в большой степени присутствует игровой момент и одновременно возникает эффект утраты реальности. Важнейшее условие компьютерного эксперимента – явная выраженность всех ходов мысли; моделирующие программы и виртуальные миры представлены в текстах особого рода. В связи с этим возникает необходимость расшифровки, интерпретации и понимания данных текстов. Все это означает существенную гуманитаризацию постнеклассического типа рациональности, необходимость знакомства с герменевтическими процедурами работы с текстами. Если классическая наука исходила из признания истинности какой-то одной объяснительной теории, неклассическая базировалась на принципе дополнительности, то в постнеклассической допускается сосуществование множества теорий по поводу одних и тех же объектов, каждая из которых вправе претендовать на истинность, и только переход от одной позиции к другой позволяет ухватить существо дела. Отмеченные признаки свидетельствуют о плюралистичности, нелинейности постнеклассического типа рациональности.

В числе принципов постнеклассической картины мира можно назвать следующие:

– Синергетический (И. Пригожин, Г. Хакен, Г. Николис, А. Н. Колмогоров и др.). Именно с ним связано, по сути дела, создание новой концепции природы. Что принципиально нового в понимание природы вносит синергетика? Первое: она раскрывает мир сложных систем (с неожиданными эффектами и неожиданными свойствами), представляет динамичную Вселенную (существующее исчезает и возникает, реализуется через спонтанные процессы) и плюралистичный мир. Второе: существенным является новое понимание времени – именно в синергетике раскрыт глубинный физический смысл времени. Третье: по-новому понимается системное строение мира, а также механизмы его функционирования и развития. В синергетике признается, что подавляющее большинство систем носят открытый характер, поскольку обмениваются с окружающей средой веществом, энергией и информацией. Все естественно существующие системы – это открытые системы, они функционируют в соответствии с законом возрастания энтропии, тогда как закрытые системы искусственны и маловероятны, при их функционировании энтропия является постоянной величиной. Закрытые системы – это детерминированные, равновесные, обратимые процессы; напротив, открытым системам свойственны необратимость, неравновесность и случайность. В функционировании открытых систем при определенных условиях проявляются свойства, которые не присущи объектам неорганической природы: в сильно неравновесных условиях система обладает способностью воспринимать различия во внешнем мире (например, слабые гравитационные и электрические поля) и «учитывать» их в своем функционировании. Главенствующую роль в окружающем нас мире играет неустойчивость и неравновесность. Итак, в открытых системах протекают необратимые процессы, они находятся в состоянии неустойчивости и неравновесия (доходящего до сильного неравновесия) и могут протекать с нарушением закона энтропии. Для описания функционирования открытых систем вводятся такие понятия, как флуктуация (отклонение поведения системы от привычного хода), бифуркация (точка перелома, в которой функционирующая система может разрушиться) и др. Подобный механизм функционирования открытых систем является одновременно и механизмом их развития. В сильно неравновесных системах в точках перелома, бифуркации, когда дальнейшее функционирование становится непредсказуемым, т. е. недетерминируемым предыдущим состоянием, возможен спонтанный переход системы на более высокий уровень организации и упорядоченности. В синергетике этот процесс называется возникновением порядка из беспорядка и хаоса.

Спонтанность и самоорганизация в классической и неклассической науке считались атрибутивными признаками живых систем, а синергетика обнаруживает их и в неорганической природе. Это означает, что вместе с синергетикой идея эволюции проникает на фундаментальный уровень организации материи – в микромир. Революционность подобного шага заключается в том, что даже в неклассической науке идея эволюции не дошла до этого уровня. Обнаружение механизма эволюции на микроскопическом уровне и является физическим обоснованием времени. Время обретает совершенно непривычный смысл: оно не есть движение от такого прошлого, которое всеми своими особенностями входит в настоящее, которое, в свою очередь, однозначным образом определяет будущее. Метафора «стрелы времени» понадобилась И. Пригожину для того, чтобы показать: будущее не задано, оно (а вместе с ним и время) конструируется. Синергетическая модель эволюции имеет нелинейный характер, поэтому с синергетикой в философском смысле нередко связывают так называемую «нелинейную онтологию». Синергетические представления постепенно охватывают все новые и новые области знания (физику, химию, биологию, социологию, экономику и др.) и обретают общенаучное значение.

– Во второй половине ХХ в. в науке формируется так называемый антропный принцип, суть которого связана с ответом на вопрос: случайно или закономерно было появление человека во Вселенной? Возникает необходимость на основании данных науки решить вопрос о месте человека в мире. В другой постановке возникает та же проблема: если законы физики, астрономии, химии носят самый общий характер, то правомерно ли говорить об общих биологических законах Вселенной? Некоторые исследователи формулировку антропного принципа связывают с именем отечественного физика Л. Б. Окуня, который на основании проведенных исследований заявил о зависимости человеческой жизни на Земле от значений мировых фундаментальных констант, как они сложились в ходе эволюции Вселенной на ранних этапах ее развития, поскольку по законам вероятности они могли иметь и другие значения (1991). Другие называют имя английского астрофизика Б. Каретера; суть его подхода заключается в том, что для зарождения биологического вещества надо предположить плюрализм вселенных; и это находит подтверждение в ряде новейших астрофизических открытий – о «темной» материи и энергии, об ускорении расширения Вселенной.

Во второй половине ХХ в. практически во всех областях науки исследователи приходят к признанию существенного параметра всех явлений и событий – информационной составляющей. Первоначально данный параметр был введен для объяснения механизмов управления в системах с обратной связью, в кибернетических устройствах (Н. Винер), позднее оказалось, что без понятия информации – генетического кода – невозможно объяснить механизмы развития и существования живого (происходящих в условиях обмена сигналами между живыми организмами и окружающей средой), а также нельзя понять существо цивилизации современного типа, которая получила название информационного общества. И, наконец, в физической области исследований, раскрывающей фундаментальные законы мира, также вводится понятие информации. С помощью данного понятия описывают процессы, противоположные энтропийным: если энтропия характеризует меру беспорядка в состоянии физической системы, то, напротив, информация – меру порядка. Поэтому информацию и характеризуют как отрицательную энтропию (или негэнтропию); формулируется зависимость: с увеличением энтропии уменьшается негэнтропия, что означает потерю информации. Внесение информационной составляющей во все подсистемы науки оценивается как «информационный взрыв». При попытках выявить общенаучный и философский смысл понятия информации чаще всего раскрывают то, чем она не является, т. е. дают отрицательные определения, а именно что информация – это не материя и не энергия. Но тем самым утверждается ее значимость: выходит, что она существует наряду с вещественными и энергетическими характеристиками объектов и представляет собой меру порядка (которая имеет строго количественные определения в различных теориях информации (К. Шеннон и др.)). Понятие порядка близко классическому философскому понятию «внутренней формы», которое буквально и заключено в термине informatio (лат. informatio – ознакомление, разъяснение).

1.5.5. Особенности социального статуса неклассической и постнеклассической науки. Фундаментальные и прикладные исследования все чаще оказываются связанными с военными заказами: сначала создаются атомные бомбы, а уже затем атомные электростанции. В современном обществе стало невозможно сохранять старый идеал служения знанию ради него самого, а поиск истины рассматривать как добро само по себе. Взрывы первых атомных бомб в 1945 г. показали, насколько сильно жизнь большого количества людей зависит от научных открытий. Все активнее звучит мысль о смыкании науки и власти. Наука оказывается тесно связанной с государственной идеологией (в нацистской Германии, в СССР).

Но одновременно с этими процессами набирают силу процессы, которые заставляют оценивать науку с этических позиций. «Наука – это Добро или Зло?» Тема «Наука и власть» дополняется темой «Наука и этика». В образованном сознании витает представление о «комплексе Оппенгеймера» – одного из создателей атомной бомбы, который на личном опыте ощутил всю противоречивость прогресса, который несет с собой наука, когда пионерские для самой науки идеи оборачиваются страданием и гибелью людей. Сегодня уместно говорить и о «комплексе А. Д. Сахарова» и т. п.

В силу дорогостоящего характера ряда научных исследований (в первую очередь в области ядерной физики) формируются объединенные научные сообщества из ученых ряда государств (ЦЕРН в Швейцарии, Дубна в России и др.). Это можно оценить как процесс интернационализации науки, который проникает и в сферу подготовки научных кадров (Кавендишская лаборатория в Кембридже, Боровский институт в Копенгагене и др.).

Наука первой половины ХХ столетия демонстрирует тесную связь с промышленностью, практикой, жизнью; идет взаимное прорастание науки и промышленности. Эксперимент вместо уникального события как средства научного исследования все основательнее погружается в практику: появляются космические эксперименты, социальные эксперименты, эксперименты так называемого промышленного типа. Так, еще в начале ХХ в. Г. Резерфорд считал проблему строения ядра чисто академической, а уже к середине столетия искусственная радиоактивность революционизировала многие отрасли медицины, биологии, химии и металлургии и др.

В последней четверти ХХ – начале ХХI в. формируется так называемый мир высоких технологий. Некоторые исследователи суть этого процесса оценивают как конвергенцию науки и технологии, когда технологические процессы и средства становятся наукоемкими и, со своей стороны, стимулируют появление таких новаций, которые трудно заранее предвидеть (как, например, это происходит с Интернетом). Мир высоких технологий охватывает все стороны жизни современного человека, связан с созданием новых материалов и процессов в неорганической, органической и социально-гуманитарной сферах (нанотехнологии, телекоммуникации, биотехнологии, космические, интеллектуальные, медицинские и даже политические технологии и пр.) и имеет высокий экономический эффект.

Радикально новый способ институционализации науки связан с появлением во второй половине ХХ в. таких форм социальной организации, как наукограды (Академгородок в Новосибирске, Дубна, Обнинск и др.) и технопарки (Силиконовая долина, будущее Сколково и др.). Градообразующим фактором наукоградов является научно-исследовательская деятельность, для обеспечения которой создаются исследовательские институты, экспериментальные площадки и центры (ускорители элементарных частиц и пр.), лаборатории, конструкторские бюро и пр.; под эти же виды деятельности подстраиваются и высшие образовательные учреждения. Технопарки (типа Силиконовой долины) – это конгломераты, объединенные не только обширно простирающейся территорией, но прежде всего исследовательскими разработками в мире высоких технологий, которые находят себе поддержку в виде инвестиций так называемого венчурного (рискованного) капитала.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Аверинцев С. С. Поэтика ранневизантийской литературы / С. С. Аверинцев. СПб.: Азбука-классика, 2004. 476 с.

Адо П. Что такое античная философия? / П. Адо; пер. с фр. В. П. Гайдамака. М.: Изд-во гуманит. лит., 1999. 317 с.

Аристотель и античная литература / отв. ред. М. Л. Гаспаров. М.: Наука, 1978. 230 с.

Бахтин М. М. Работы 1920-х годов: К 100-летию со дня рождения / М. М. Бахтин. Киев: Next, 1994. 384 с.

Башмакова И. Г. Предисловие / И. Г. Башмакова // Диофант Александрийский. Арифметика и книга о многоугольных числах / пер. с древнегреч. И. Н. Веселовского; под ред., с коммент. И. Г. Башмаковой. 2-е изд. М.: URSS; Изд-во ЛКИ, 2007. 324 с.

Бердяев Н. А. Философия свободы. Смысл творчества / Н. А. Бердяев. М.: Правда, 1989. 607 с.

Бернал Дж. Наука в истории общества / Дж Бернал; пер. с англ. М.: Иностр. лит., 1956. 340 с.

Блок М. Апология истории, или Ремесло историка / М. Блок; пер. Е. М. Лысенко; примеч. и вступ. ст. А. Я. Гуревича. 2-е изд., доп. М.: Наука, 1986. 254 с.

Боголюбов А. Н. Творения рук человеческих: Естественная история машин / А. Н Боголюбов. М.: Знание, 1988. 173 с.

Борн М. Моя жизнь и взгляды = My life and my views / М. Борн; пер. с англ. М. Арского и В. Белоконя. 2-е изд. М.: УРСС, 2004. 161 с.

Булгаков С. Н. Свет невечерний: Созерцания и умозрения / С. Н. Булгаков. М.; Харьков: АСТ; Фолио, 2001. 665 с.

Вайскопф В. Физика в двадцатом столетии / В. Вайскопф; пер. с англ. А. Г. Беды, А. В. Давыдова; предисл. Ю. В. Сачкова и Г. Бете. М.: Атомиздат, 1977. 269 с.

Васильев А. В. Николай Иванович Лобачевский / А. В. Васильев; Казань: Типография Глав. упр-я уделов, 1914. 127 с.

Василькова В. В. Порядок и хаос в развитии социальных систем: Синергетика и теория социальной самоорганизации / В. В. Василькова; СПб.: Лань, 1999. 479 с.

Вернадский В. И. Избранные труды по истории науки / В. И. Вернадский. М.: Наука, 1981. 359 с.

Вернадский В. И. Философские мысли натуралиста / В. И. Вернадский. М.: Наука, 1988. 520 с.

Вернан Ж. – П. Происхождение древнегреческой мысли / Ж. – П. Вернан; пер. с фр.; общ. ред. Ф. Х. Кессиди, А. П. Юшкевича; предисл. А. П. Юшкевича; послесл. Ф. Х. Кессиди. М.: Прогресс, 1988. 221 с.

Вонсовский С. В. Современная естественно-научная картина мира: учеб. пособие / С. В. Вонсовский; М.; Ижевск: Ин-т компьютер. исслед; R&C Dynamics, 2006. 676 с.

Воронцов-Вельяминов Б. А. Лаплас / Б. А Воронцов-Вельяминов. 2-е изд., доп. и перераб. М.: Наука, 1985. 286 с.

Гайденко П. П. Эволюция понятия науки (XVII–XVIII вв.): формирование научных программ нового времени / П. П. Гайденко; отв. ред. И. Д. Рожанский. М.: Наука, 1987. 447 с.

Гайденко П. П. Эволюция понятия науки: становление и развитие первых научных программ / П. П. Гайденко; отв. ред. И. Д. Рожанский. 2-е изд. М.: URSS; ЛИБРОКОМ, 2010. 566 с.

<< 1 2 3 4 5 6 >>
На страницу:
3 из 6