Оценить:
 Рейтинг: 0

Популярно о конечной математике и ее интересных применениях в квантовой теории

Жанр
Год написания книги
2023
Теги
<< 1 ... 32 33 34 35 36 37 >>
На страницу:
36 из 37
Настройки чтения
Размер шрифта
Высота строк
Поля
Academic Editor Notes:

The appeal's document does not add any additional information and there is no reason to change our previous decision.

То есть ясно, что мой appeal никто всерьез не рассматривал и/или даже не хотел рассматривать. В их письме написано, что это решение принял "a member of the Editorial Board". Во время представления статьи, надо было предложить пять потенциальных рецензентов. В моем предложении, трое из них были members of the Editorial Board.

Как я писал выше, из трех рецензентов, двое были за а Рецензент # 3 был против. Эти двое написали, что подпишут свой отзыв, а Рецензент # 3 (который отверг статью) написал, что не подпишет. Я вполне допускаю, что он/она одновременно были и "a member of the Editorial Board". Если это так, то ясно, что у него/нее не было никакого желания рассматривать appeal.

Этот журнал также объявил Special Issue "Origin of the Flavor Structure in the Standard Model and Beyond" в котором главный редактор: Prof. Dr. Fei Wang. Они пригласили меня послать им статью для этого Special Issue. Я написал им, что моя статья [30] полностью по их теме, но она отвергнута журналом Universe. Послал им свой appeal и спросил, будут ли они рассматривать мою статью, если я ее официально им пошлю. Но никакого ответа тоже не получил. Такое поведение – ни да ни нет – тоже полностью противоречит всем правилам научной этики.

Глава 19. Заключение

Основные цели этих заметок такие. Во-первых, я хотел на возможно более популярном уровне описать свое понимание фундаментальной квантовой физики и математики и то, что я пытался сделать. Самое главное в моем подходе – это, пожалуй, то, что изложено в разделе 9.5 и главе 12. Сейчас очень кратко повторю что является самым главным.

Понятие бесконечно малых предложили Ньютон и Лейбниц. В те времена об элементарных частицах и атомах ничего не знали и думали, что, в принципе, любое вещество можно разделить на любое число частей. Но теперь ясно, что как только доходим до уровня элементарных частиц, то дальнейшее деление невозможно. Так что в природе нет бесконечно малых, и обычное деление не является универсальным: оно имеет смысл только до какого-то предела.

Казалось бы, это очевидно? И тогда ясно, что фундаментальная квантовая физика должна быть построена без бесконечно малых. Казалось бы, все понимают, что построение такой физики – далеко не простая задача, и, казалось бы, попытки такого построения должны поощряться. Однако, мои истории, описанные выше, показывают, что, как правило, establishment не только не поощряет такие попытки, но делает все, чтобы результаты в этом направлении не были опубликованы.

Что еще поразительно. Как правило, физики даже произносят слова, что в природе есть малые, но не бесконечно малые. И, казалось бы, отсюда очевидно, что стандартная математика с бесконечно малыми, непрерывностью и т.д. не может быть теорией на которой основана самая фундаментальная физика; она может быть только хорошим приближением. Но здесь физики говорят, что раз стандартная математика в целом работает, то зачем философствовать и привлекать что-то другое. Как правило, конечную математику большинство физиков не знают и, когда они слышат что-то типа поля Галуа, то, для душевного спокойствия, им проще считать, что это какая-то экзотика или патология.

Я понимаю, что, как правило, перед физиками стоят проблемы, которые могут быть решены в рамках обычных подходов. И я ни в коем случае не утверждаю, что все физики должны переключиться на конечную математику. Но, во всяком случае, я думаю, что физики не должны быть агрессивно против попыток построить квантовую физику без бесконечно малых. Но, мои истории показывают, что, почему-то, многие физики агрессивно против и иногда даже стоят насмерть против публикаций с попытками рассмотреть подходы с конечной математикой.

Когда я учился в МФТИ и слушал лекции М.А. Наймарка, В.С. Владимирова и других известных математиков, то мне казалось, что мехмат МГУ – чуть ли не высшая каста, так как для математиков строгость является высшим приоритетом. Но потом, общаясь с математиками, я был удивлен, что они знают про теоремы Гёделя и проблемы с обоснованием математики, но у них образ мышления такой, что раз во многих случаях стандартная математика работает, то незачем переживать из-за проблем в ее обосновании. В этом смысле их образ мышления похож на образ мышления физиков, которые думают, что раз теория во многих случаях работает, то незачем наводить строгость. Но все же, математики, как правило, знают конечную математику и я надеялся, что им будет интересно узнать, что конечная математика – более общая чем стандартная. И, так как в конечной математике нет проблем с обоснованием, то математики, во всяком случае, не должны быть агрессивно против моих публикаций. Но, как я описывал, что очень странно, что даже многие «конечные» математики агрессивно против, а стандартные математики тем более.

Кроме проблемы бесконечно малых, я описал другие задачи, в которых я предложил новые подходы, но, так как они не в духе того, что делает establishment, то у меня были большие проблемы с публикацией. Но, из всех этих задач, есть одна, которая, наверное, затмевает все остальные. Это проблема dark energy.

Казалось бы, в физике общепринято, что когда появляются новые экспериментальные данные, то вначале надо попытаться объяснить их, исходя из имеющейся науки. Только если это не получается, то можно привлекать какую-то экзотику.

Но здесь все наоборот: сразу стали привлекать dark energy, quintessence и другую бессмыслицу. Возникла большая активность, пишут статьи, проводят конференции, планируют дорогостоящие эксперименты и даже дают нобелевские премии. А я во всех своих статьях на эту тему (например, в последней популярной статье [18]) и в своей книге [23] объясняю, что проблем с объяснением космологического расширения нет, все объясняется исходя из известной науки, и поэтому dark energy и quintessence – ахинея. Казалось бы, если establishment честный, то они должны прочитать хотя бы [18] и прямо сказать я чего-то не понимаю или они. Но они делают вид, что мои публикации на эту тему они не замечают.

Многие физики знают, что в стандартной квантовой теории есть проблемы, например, бесконечности. В перенормируемых теориях от них можно формально избавиться (если не очень следить за математической строгостью). Но догма такая, что квантовая гравитация – это неперенормируемая QFT, и там от бесконечностей нельзя избавиться даже во втором приближении теории возмущений. И, даже в перенормируемых теориях, свойства ряда теории возмущений совершенно непонятны, например, сходится ли он, является ли асимптотическим и т.д. Так что, если константа взаимодействия не маленькая, то тоже ничего посчитать нельзя.

Некоторые физики считают, что все эти проблемы – несерьезные, а те, кто считают эти проблемы серьезными, думают, что надо где-то улучшить QFT или string theory и тогда эти проблемы будут решены. Но предполагается, что все это будет сделано в обычной непрерывной математике, хотя, из сказанного выше, кажется очевидным, что такая математика не может быть фундаментальной на квантовом уровне.

Попытки решить фундаментальные проблемы дискретного мира при помощи непрерывной математики, хорошо иллюстрируется в анекдоте, который мне рассказал Толя Штилькинд и который я привел в разд. 11.4. Но т. к. многие читатели этих заметок, могут захотеть прочитать только введение и заключение (if any), то приведу этот анекдот опять.

"Группа обезьян получила задание достичь Луну. После этого все обезьяны начали карабкаться на деревья. Та обезьяна, которая залезла выше всех, думает, что у нее самый большой прогресс, и она ближе к цели чем остальные обезьяны". Этот анекдот я привел даже в своей книге [23], и он также содержит мораль, что, чтобы достичь Луну, надо вначале слезть с деревьев. В данном случае, слезть с деревьев означает признать, что фундаментальные проблемы квантовой теории нельзя решить при помощи непрерывной математики. Но большинство физиков это не принимают, т.е., им комфортней сидеть на деревьях и выяснять кто выше залез.

В этих заметках я предлагаю решать фундаментальные проблемы квантовой теории при помощи конечной математики и привожу аргументы в пользу этого. Читатель может иметь разные мнения о том насколько мой подход разумный, фундаментальный и т. д. Но, по моим понятиям, наука может развиваться только если разные подходы имеют право на существование. Как реализовать это на практике?

С формальной точки зрения, для этого, вроде бы, есть все условия. Есть много журналов, в которых редакционная политика клянется, что все представленные работы по тематике журнала будут внимательно и объективно рассмотрены и т. д. Однако, в большинстве случаев все эти слова никакого отношения к действительности не имеют. Как я писал в главе 10, эта ситуация ассоциируется у меня с тем, что в СССР сталинская конституция была очень демократической, там разрешались свобода слова, собраний и т.д., но все понимали, что если хочешь жить, то лучше об этом забыть.

На самом деле, ситуация такая. У абсолютного большинства редакторов и рецензентов менталитет такой, что если им кажется, что статья не в рамках стандартов, то они даже не хотят разбираться, а ищут повод, чтобы статью тут же отфутболить. В главе 10 я описал свое видение причин почему так происходит.

Рассмотрим, для примера, мою ситуацию. В разделе 11.4 я привел аргументы, что рано или поздно фундаментальная квантовая теория будет основана на конечной математике, а такие подходы как квантовая теория поля или теория струн не основаны на строгих физических принципах и рано или поздно уйдут в историю. Моя первая работа в этом подходе вышла в 1988 г. в Ядерной Физике, потом вышли две большие статьи в Journal of Mathematical Physics в 1989 и 1993 гг. В то время еще не было больших трудностей в опубликовании статей, которые не в mainstream. Потом у меня появились намного более сильные результаты, но ситуация в physics community сильно изменилась. В главах 12–17 я описал проблемы с опубликованием моих статей и то с каким трудом давалась каждая публикация. Несмотря на то, что посылал свои статьи, наверное, почти во все так наз. престижные журналы, до сих пор не получил ни одной рецензии, в которой бы говорилось, что подход неправильный, нереалистический и т.д. То, что по этой теме удалось опубликовать статью в Physical Review D – исключение т.к. просто так сложились обстоятельства. Но, как правило, редакторы старались отфутболить статью даже до рецензии, а если дело до рецензии доходило, то рецензенты оказывались не только тупыми, но и, самое главное, злобными. Менталитет многих из них был такой, что если статья с конечной математикой будет опубликована, то произойдет конец света, поэтому они должны стоять насмерть, чтобы такую статью не пропустить. Не понимаю, осознают ли они, что поступают мерзко, или думают, что они должны зарубить статью из каких-то высоких научных соображений, даже если ничего в ней не понимают. К счастью, в таких российских журналах как “Теоретическая и Математическая Физика” и “Physics of Elementary Particles and Atomic Nuclei” научный уровень рецензентов никак не ниже, а иногда и выше чем в так называемых престижных западных журналах, а уровень научной порядочности намного выше.

В главе 10 я высказал свою точку зрения, что основная проблема в науке сейчас – почти полное отсутствие каких-либо моральных критериев, и что те, которые не соблюдают научную этику, не боятся, что об этом узнают и их репутация пострадает. Типичные нарушения научной этики такие: 1) даже редакторы не следуют editorial policy своих журналов; 2) рецензенты тоже считают необязательным следовать этим правилам, как правило, они даже не читают editorial policy т. к. думают, что они лучше знают какие статьи можно печатать; 3) рецензенты дают отрицательные отзывы, даже если они совершенно не понимают, что сделано в статье и не делают никаких попыток понять; 4) рецензенты не допускают, что задача, рассматриваемая в статье может решаться в разных подходах, они разрешают только те подходы, которые понимают; 5) редакторы и рецензенты высказывают отрицательные суждения о статье без всякой попытки обосновать эти суждения, т.е., они, видимо, не понимают, что это полностью противоречит научной этике. Читатель сам сможет судить, подтверждают ли истории описанные выше эту точку зрения. Я думаю, что полностью подтверждают и поэтому, как я подробно описал, считаю, что у меня и ученых перечисленных ниже, разные понятия о научной этике:

1. Gerard ‘t Hooft, лауреат Нобелевской премии.

2. Frank Wilczek, лауреат Нобелевской премии.

3. Alexander Polyakov, лауреат Мильнеровской премии, премии имени Дирака и других премий.

4. Grigory Volovik, лауреат Lars Onsager Prize и Simon Prize.

5. John Heil, editor of Journal of the American Philosophical Association.

6. Bruno Nachtergaele, editor of Journal of Mathematical Physics.

7. Steven G. Krantz, editor of Notices of the Americam Mathematical Society.

8. Sven Heinemeyer, associative editor of European Physical Journal C.

9. Brian Greene, professor at Columbia University, chairman of the World Science Festival and Chief Editor of “Annals of Physics”.

10. Carlo Rovelli, Editor-in-Chief of Foundations of Physics, Centre de Physique Thеorique de Luminy, Aix-Marseille University.

11. Marek Zukowski, Associate Editor Physical Review A.

12. Saverio Pascazio, Universita di Bari.

13. Michael Thoennessen, Editor-in-Chief of the APS.

14. FOM moderators:

Martin Davis

Alasdair Urquhart

John Baldwin

Harvey Friedman

Steve Simpson

John Burgess

Andreas Blass

15. Gary Mullen, Editor Finite Fields and Their Applications.

16. Terence Tao, лауреат премии Филдса и других премий.

17. Alessandra Silvestri, Editor of Physics of the Dark Universe.

18. Diederik Aerts, Editor-in-Chief of Foundations of Science.

19. Hubert Saleur, Editor, Nuclear Physics, Section B

<< 1 ... 32 33 34 35 36 37 >>
На страницу:
36 из 37