/
» (кн. III, стр. 577).
Это утверждение опять-таки характерно для односторонней эмпирии. Для того чтобы электричество могло вообще течь, его разлагают на положительное и отрицательное. Но все попытки объяснить ток, исходя из этих двух материй, наталкиваются на трудности. И это относится одинаково как к гипотезе, что в токе имеется каждый раз лишь одна из этих материй, так и к гипотезе, что обе материи текут одновременно в противоположных направлениях, и, наконец, также и к той третьей гипотезе, что одна материя течет, а другая остается в покое. Если мы станем придерживаться этой последней гипотезы, то как мы объясним себе то необъяснимое представление, что отрицательное электричество, которое ведь достаточно подвижно в электрической машине и в лейденской банке, оказывается в токе прочно связанным с массой тела? Очень просто. Наряду с положительным током +e, который течет по проволоке направо, и отрицательным током —e, который течет налево, мы принимаем еще третий ток нейтрального электричества ±
/
, текущий направо. Таким образом, мы сперва допускаем, что оба электричества могут вообще течь лишь в том случае, если они отделены друг от друга; а для объяснения явлений, наблюдающихся при течении раздельных электричеств, мы допускаем, что они могут течь и не отделенными друг от друга. Сперва мы делаем некоторое предположение, чтобы объяснить данное явление, а при первой трудности, на которую мы наталкиваемся, делаем другое предположение, которое прямо отменяет первое. Какова должна быть та философия, на которую имели бы хоть какое-нибудь право жаловаться эти господа?
Но, наряду с этим взглядом на электричество как на особого рода материю, вскоре появилась и другая точка зрения, согласно которой оно является простым состоянием тел, «силой», или, как мы сказали бы теперь, особой формой движения. Мы выше видели, что Гегель, а впоследствии Фарадей разделяли эту точку зрения. После того как открытие механического эквивалента теплоты окончательно устранило представление о каком-то особом «теплороде» и доказало, что теплота есть некое молекулярное движение, следующим шагом было применение нового метода также и к изучению электричества и попытка определить его механический эквивалент. Это удалось вполне. В особенности опыты Джоуля, Фавра и Рауля не только установили механический и термический эквиваленты так называемой «электродвижущей силы» гальванического тока, но и доказали ее полную эквивалентность энергии, высвобождаемой химическими процессами в гальваническом элементе или потребляемой ими в электролитической ванне. Благодаря этому делалась все более несостоятельной гипотеза о том, будто электричество есть какая-то особая материальная жидкость.
Однако аналогия между теплотой и электричеством была все же неполной. Гальванический ток все еще отличался в очень существенных пунктах от теплопроводности. Все еще нельзя было указать, что собственно движется в электрически заряженных телах. Допущение простых молекулярных колебаний, как в случае теплоты, оказалось здесь недостаточным. При колоссальной скорости электричества, превосходящей даже скорость света[360 - В дальнейшем на основе обобщения новых экспериментальных данных, прежде всего опыта Майкельсона (1881 г.), в специальной теории относительности Эйнштейна (1905 г.) было установлено, что скорость распространения света в вакууме (с) является универсальной физической константой и имеет значение предельной скорости. Скорость перемещения электрически заряженных частиц всегда меньше с.], все еще трудно было отказаться от представления, что между молекулами тела здесь движется нечто вещественное. Здесь-то и выступают новейшие теории Клерка Максвелла (1864 г.), Ханкеля (1865 г.), Ренара (1870 г.) и Эдлунда (1872 г.) в согласии с высказанной уже в 1846 г. впервые Фарадеем гипотезой, что электричество – это движение некоей, заполняющей все пространство, а следовательно, и пронизывающей все тела упругой среды, дискретные частицы которой отталкиваются обратно пропорционально квадрату расстояния; иными словами, что электричество – это движение частиц эфира и что молекулы тел принимают участие в этом движении. Различные теории по-разному изображают характер этого движения; теории Максвелла, Ханкеля и Ренара, опираясь на новейшие исследования о вихревых движениях, видят в нем – каждая по-своему – тоже вихревое движение. И, таким образом, вихри старого Декарта снова находят почетное место во все новых областях знания. Мы здесь не будем вдаваться в рассмотрение подробностей этих теорий. Они сильно отличаются друг от друга и наверное испытают еще много переворотов. Но в лежащей в основе всех их концепции заметен решительный прогресс: представление о том, что электричество есть воздействующее на молекулы тел движение частиц пронизывающего всю весомую материю светового эфира. Это представление примиряет между собой обе прежние концепции. Согласно этому представлению, при электрических явлениях действительно движется нечто вещественное, отличное от весомой материи. Но это вещественное не есть само электричество. Скорее наоборот, электричество оказывается в самом деле некоторой формой движения – хотя и не непосредственного, прямого движения – весомой материи. Эфирная теория указывает, с одной стороны, путь, как преодолеть грубое первоначальное представление о двух противоположных электрических жидкостях; с другой же стороны, она дает надежду выяснить, что является собственно вещественным субстратом электрического движения, что собственно за вещь вызывает своим движением электрические явления.
У эфирной теории можно уже отметить один бесспорный успех. Как известно, существует по крайней мере один пункт, в котором электричество прямо изменяет движение света: оно вращает плоскость поляризации его. Клерк Максвелл, опираясь на свою вышеуказанную теорию, вычислил, что удельная диэлектрическая постоянная какого-нибудь тела равна квадрату его показателя преломления света. Больцман исследовал различные непроводники в отношении их диэлектрической постоянной и нашел, что для серы, канифоли и парафина квадратный корень из этой постоянной равен их показателю преломления света. Наибольшее наблюдавшееся при этом отклонение – для серы – равнялось только 4 %. Таким образом, специально максвелловская эфирная теория была подтверждена экспериментально.
Но потребуется еще немало времени и труда, пока с помощью новых опытов удастся вылущить твердое ядро из этих противоречащих друг другу гипотез. А до тех пор или же пока и эфирная теория не будет вытеснена какой-нибудь совершенно новой теорией, учение об электричестве находится в том неприятном положении, что оно вынуждено пользоваться терминологией, которую само оно признаёт неверной. Вся его терминология еще основывается на представлении о двух электрических жидкостях. Оно еще говорит совершенно без стеснения об «электрических массах, текущих в телах», о «разделении электричеств в каждой молекуле» и т. д. В значительной мере это зло, как сказано, с неизбежностью вытекает из современного переходного состояния науки; но оно же, при господстве односторонней эмпирии как раз в этой отрасли знания, со своей стороны, немало содействует сохранению той идейной путаницы, которая имела место до сих пор.
Что касается противоположности между так называемым статическим электричеством (или электричеством трения) и динамическим электричеством (или гальванизмом), то ее можно считать опосредствованной с тех пор, как научились получать при помощи электрической машины длительные токи и, наоборот, производить при помощи гальванического тока так называемое статическое электричество, заряжать лейденские банки и т. д. Мы оставим здесь в стороне статическое электричество и точно так же магнетизм, рассматриваемый теперь тоже как некоторая разновидность электричества. Теоретического объяснения относящихся сюда явлений придется во всяком случае искать в теории гальванического тока; поэтому мы остановимся преимущественно на последней.
Длительный ток можно получить различными способами. Механическое движение масс производит прямо, путем трения, ближайшим образом лишь статическое электричество; для получения таким путем длительного тока нужна огромная непроизводительная затрата энергии; чтобы движение это по крайней мере в большей своей части превратилось в электрическое движение, оно нуждается в посредстве магнетизма, как в известных магнитоэлектрических машинах Грамма, Сименса и т. д. Теплота может превращаться прямо в электрический ток, как, например, в месте спайки двух различных металлов. Высвобождаемая химическим действием энергия, проявляющаяся при обычных обстоятельствах в форме теплоты, превращается при определенных условиях в электрическое движение. Наоборот, последнее превращается при наличии соответствующих условий во всякую другую форму движения: в движение масс (в незначительной мере непосредственно в электродинамическом притяжении и отталкивании; в крупных же размерах, опять-таки посредством магнетизма, в электромагнитных двигателях); в теплоту – повсюду в замкнутой цепи тока, если только не происходит других превращений; в химическую энергию – во включенных в цепь электролитических ваннах и вольтаметрах, где ток разлагает такие соединения, с которыми иным путем ничего нельзя поделать.
Во всех этих превращениях имеет силу основной закон о количественной эквивалентности движения при всех его видоизменениях. Или, как выражается Видеман, «согласно закону сохранения силы, механическая работа, употребленная каким-нибудь образом для получения тока, должна быть эквивалентна той работе, которая необходима для порождения всех действий тока»[361 - Кн. III, стр. 472]. При переходе движения масс или теплоты в электричество[362 - Я употребляю слово «электричество» в смысле электрического движения с тем самым правом, с каким употребляется слово «теплота» при обозначении той формы движения, которая обнаруживается для наших чувств в качестве теплоты. Это не должно вызвать никаких возражений, тем более что здесь заранее определенно исключена возможность какого бы то ни было смешения с состоянием напряжения электричества.] здесь не представляется никаких трудностей: доказано, что так называемая «электродвижущая сила» равна в первом случае потраченной для указанного движения работе, а во втором случае «в каждом спае термоцепи прямо пропорциональна его абсолютной температуре» (Видеман, кн. III, стр. 482), т. е. опять-таки пропорциональна имеющемуся в каждом спае измеренному в абсолютных единицах количеству теплоты. Закон этот, как доказано, применим и к электричеству, получающемуся из химической энергии. Но здесь дело не так просто, – по крайней мере с точки зрения ходячей в наше время теории. Поэтому присмотримся несколько внимательнее к этому случаю.
Фавру принадлежит одна из прекраснейших серий опытов касательно тех превращений форм движения, которые могут быть осуществлены при помощи гальванической батареи (1857–1858 гг.)[363 - Энгельс излагает опыты Фавра по книге Видемана, т. II, разд. 2, стр. 521–522.]. Он ввел в один калориметр батарею Сми из пяти элементов; в другой калориметр он ввел маленькую электромагнитную двигательную машину, главная ось и шкив которой выступали наружу для любого механического использования. Всякий раз при получении в батарее одного грамма водорода, resp.[364 - Respective – соответственно. – Ред.] при растворении 32,6 грамма цинка (выраженного в граммах прежнего химического эквивалента цинка, равного половине принятого теперь атомного веса 65,2) имели место следующие результаты:
А. Батарея в калориметре замкнута на себя, с выключением двигательной машины: теплоты получено 18682, resp. 18 674 единицы.
В. Батарея и машина сомкнуты в цепь, но машина заторможена: теплоты в батарее – 16 448, в машине – 2219, вместе – 18 667 единиц.
С. Как В, но машина находится в движении, не поднимая, однако, груза: теплоты в батарее – 13 888, в машине – 4769, вместе – 18 657 единиц.
D. Как С, но машина поднимает груз и производит при этом механическую работу, равную 131,24 килограммометра: теплоты в батарее – 15 427, в машине – 2947, вместе – 18 374 единицы; потеря по сравнению с вышеприведенной величиной в 18 682 единицы составляет 308 единиц теплоты. Но произведенная механическая работа в 131,24 килограммометра, помноженная на 1000 (чтобы перевести граммы химического результата в килограммы) и разделенная на механический эквивалент теплоты, равный 423,5 килограммометра (См. примечание[365 - 24 ноября 1859 г. вышел в свет основной труд Ч. Дарвина «О происхождении видов».]), дает 309 единиц теплоты, т. е. в точности вышеприведенную разницу, как тепловой эквивалент произведенной механической работы.
Таким образом, и для электрического движения убедительно доказана – в пределах неизбежных погрешностей опыта – эквивалентность движения при всех его превращениях. И точно так же доказано, что «электродвижущая сила» гальванической цепи есть не что иное, как превращенная в электричество химическая энергия, и что сама цепь есть не что иное, как приспособление, аппарат, превращающий освобождающуюся химическую энергию в электричество, подобно тому как паровая машина превращает доставляемую ей теплоту в механическое движение, причем в обоих случаях совершающий превращение аппарат не прибавляет еще от самого себя какой-либо добавочной энергии.
Но здесь перед традиционными воззрениями возникает некоторая трудность. Эти воззрения приписывают цепи, на основании имеющихся в ней отношений контакта между жидкостями и металлами, некоторую «электрическую разъединительную силу», которая пропорциональна электродвижущей силе и которая, следовательно, представляет для некоторой данной цепи определенное количество энергии. Как же относится этот источник энергии, присущий, согласно традиционным взглядам, цепи как таковой, помимо всякого химического действия, как относится эта электрическая разъединительная сила к энергии, освобождаемой химическим действием? И если она является независимым от химического действия источником энергии, то откуда получается доставляемая ею энергия?
Вопрос этот, поставленный в более или менее неясной форме, образует пункт раздора между основанной Вольтой контактной теорией и вскоре вслед за этим возникшей химической теорией гальванического тока.
Контактная теория объясняла ток из электрических напряжений, возникающих в цепи при контакте металлов с одной или несколькими жидкостями или же жидкостей между собой, и из их выравнивания, resp. из выравнивания в замкнутой цепи напряжений разделенных таким образом противоположных электричеств. Возникающие при этом химические изменения рассматривались чистой контактной теорией как нечто совершенно второстепенное. В противоположность этому Риттер утверждал уже в 1805 г., что ток может возникнуть лишь в том случае, если возбудители его действуют химически друг на друга уже до замыкания цепи. В общем виде Видеман (кн. I, стр. 784) резюмирует эту старую химическую теорию таким образом, что, согласно ей, так называемое контактное электричество «может появиться лишь в том случае, если одновременно с этим имеет место действительное химическое воздействие друг на друга соприкасающихся тел или же некоторое, хотя бы и не непосредственно связанное с химическими процессами, нарушение химического равновесия, некоторая «тенденция к химическому действию»».
Мы видим, что вопрос об источнике энергии гальванического тока ставится обеими сторонами совершенно косвенным образом, что, впрочем, едва ли могло быть в те времена иначе. Вольта и его преемники находили вполне естественным, что простое соприкосновение разнородных тел может порождать длительный ток, следовательно, совершать определенную работу без возмещения. Риттер же и его приверженцы столь же мало разбирались в вопросе о том, как химическое действие способно вызвать в цепи ток и его работу. Но если для химической теории пункт этот давно выяснен трудами Джоуля, Фавра, Рауля и других, то контактная теория, наоборот, все еще находится в прежнем положении. Поскольку она сохранилась, она в существенном все еще не покинула своего исходного пункта. Таким образом, в современном учении об электричестве все еще продолжают существовать представления, принадлежащие давно превзойденной эпохе, когда приходилось довольствоваться тем, чтобы указывать для любого действия первую попавшуюся кажущуюся причину, выступающую на поверхности, хотя бы при этом получалось, что движение возникает из ничего, т. е. продолжают существовать представления, прямо противоречащие закону сохранения энергии. Дело нисколько не улучшается оттого, что у этих представлений отнимают их наиболее предосудительные стороны, что их ослабляют, разжижают, оскопляют, прикрашивают, – путаница от этого должна становиться только хуже.
Как мы видели, даже старая химическая теория тока признаёт контакт в цепи совершенно необходимым для образования тока; она утверждает только, что этот контакт не способен никогда создать длительного тока без одновременного химического действия. И в наше время остается само собой разумеющимся, что контактные приспособления цепи образуют как раз тот аппарат, при помощи которого освобождаемая химическая энергия превращается в электричество, и что от этих контактных приспособлений зависит существенным образом то, перейдет ли действительно химическая энергия в электрическое движение и какое именно количество ее перейдет.
В качестве одностороннего эмпирика Видеман старается спасти от старой контактной теории все, что только можно. Последуем за ним по этому пути.
«Хотя действие контакта химически индифферентных тел», – говорит Видеман (кн. I, стр. 799), – «например металлов, не необходимо, как это раньше думали, для теории гальванического столба и не доказывается тем, что Ом вывел из него свой закон, – который может быть выведен и без этого допущения, – и что Фехнер, который экспериментально подтвердил этот закон, также защищал контактную теорию, но все же нельзя отрицать, по крайней мере при имеющихся теперь опытах, возбуждения электричества путем контакта металлов, даже если бы получающиеся при этом результаты всегда страдали с количественной стороны неизбежной ненадежностью из-за невозможности сохранить в абсолютной чистоте поверхности соприкасающихся тел».
Мы видим, что контактная теория стала очень скромной. Она соглашается с тем, что она вовсе не необходима для объяснения тока, а также с тем, что она не была доказана ни теоретически Омом, ни экспериментально Фехнером. Она даже признаёт, что так называемые основные опыты, на которые она только и может еще опереться, с количественной стороны могут давать всегда лишь ненадежные результаты, и требует в конце концов от нас лишь одного: чтобы мы признали, что вообще благодаря контакту – хотя бы только металлов! – получается движение электричества.
Если бы контактная теория ограничивалась только этим, то против нее нельзя было бы возразить ни слова. Действительно, приходится безусловно признать, что при контакте двух металлов имеют место электрические явления, при помощи которых можно заставить вздрагивать препарированную ножку лягушки, зарядить электроскоп и вызвать другие движения. Вопрос прежде всего только в том, откуда получается потребная для этого энергия.
Чтобы ответить на этот вопрос, мы должны, по Видеману (кн. I, стр. 14), «прибегнуть примерно к следующим соображениям. Если разнородные металлические пластинки А и В сблизить между собой до незначительного расстояния, то они начинают притягивать друг друга благодаря силам сцепления. При своем соприкосновении они теряют живую силу движения, сообщенную им этим притяжением. (При допущении того, что молекулы металлов находятся в непрерывном колебании, здесь могло бы иметь место также и изменение их колебаний с потерей живой силы, если при контакте разнородных металлов прикасаются друг к другу разновременно колеблющиеся молекулы.) Утрачиваемая живая сила в значительной своей части превращается в теплоту. Незначительная же часть ее уходит на то, чтобы перераспределить иным образом неразделенные до этого электричества. Как уже выше было упомянуто, сближенные между собой тела заряжаются равными количествами положительного и отрицательного электричеств в силу, быть может, неодинакового для обоих электричеств притяжения».
Скромность контактной теории становится все больше. Сперва она признаёт, что огромная электрическая разъединительная сила, которая призвана совершить впоследствии такую колоссальную работу, не обладает сама по себе никакой собственной энергией и что она не может функционировать, пока ей не будет сообщена энергия извне. А затем для нее указывается какой-то карликовый источник энергии – живая сила сцепления, которая действует только на ничтожно малых, едва доступных измерению расстояниях и которая заставляет тела проходить столь же малый, едва измеримый путь. Но это неважно: она бесспорно существует и столь же бесспорно исчезает при контакте. Однако и этот минимальный источник дает еще слишком много энергии для нашей цели: значительная часть доставляемой им энергии превращается в теплоту и лишь незначительная доля ее служит для того, чтобы вызвать к жизни электрическую разъединительную силу. Хотя, как известно, в природе немало примеров того, что крайне ничтожные импульсы вызывают колоссальнейшие действия, но, по-видимому, и сам Видеман чувствует, что его едва сочащийся капельками источник энергии здесь совершенно недостаточен, и вот он пытается отыскать второй возможный источник ее в гипотетической интерференции молекулярных колебаний обоих металлов на поверхностях их соприкосновения. Но, не говоря уже о прочих встречающихся нам здесь трудностях, Гров и Гассиот, как об этом страницей выше рассказывает нам сам Видеман, доказали, что для возбуждения электричества вовсе не необходим реальный контакт. Словом, чем больше мы вглядываемся в источник энергии для электрической разъединительной силы, тем больше он иссякает.
И все же до сих пор мы почти не знаем другого источника для возбуждения электричества при контакте металлов. По Науману («Общая и физическая химия», Гейдельберг, 1877, стр. 675), «контактно-электродвижущие силы превращают теплоту в электричество»; он находит «естественным допущение, что способность этих сил вызывать электрическое движение основывается на наличном количестве теплоты, или является, иными словами, функцией температуры», что доказано, дескать, также и экспериментально работами Леру. Также и здесь нашим уделом остается полная неопределенность. Закон вольтова ряда металлов запрещает нам сводить вопрос к химическим процессам, в незначительной мере непрерывно происходящим на поверхностях соприкосновения, всегда покрытых тонким, почти неустранимым нашими средствами слоем воздуха и нечистой воды, т. е. он запрещает нам объяснять возбуждение электричества из наличия невидимого активного электролита между поверхностями соприкосновения. Электролит должен был бы породить в замкнутой цепи длительный ток; электричество же простого контакта металлов исчезает, лишь только цепь замкнута. Здесь именно мы приходим к самому существенному пункту: способна ли объяснить образование длительного тока путем контакта химически индифферентных тел та «электрическая разъединительная сила», которую сам Видеман сперва ограничил металлами и признал неработоспособной без притока энергии извне, а затем отнес исключительно только на счет совершенно микроскопического источника энергии, и если она способна объяснить это, то каким образом?
В вольтовом ряде металлы расположены таким образом, что каждый из них электроотрицателен по отношению к предыдущему и электроположителен по отношению к последующему. Поэтому, если мы расположим в этом порядке ряд прикасающихся друг к другу металлических кусков – скажем, цинк, олово, железо, медь, платину, – то мы сможем поддерживать на обоих концах электрические напряжения. Но если мы соединим этот ряд металлов в замкнутую цепь, так что в соприкосновение придут также и цинк с платиной, то напряжение немедленно выравняется и исчезнет. «Таким образом, в замкнутом круге тел, принадлежащих к вольтову ряду, невозможно образование длительного тока электричества»[366 - Кн. I, стр. 45.].
Видеман подкрепляет это положение еще следующим теоретическим соображением:
«Действительно, если бы в круге возник длительный ток электричества, то в самих металлических проводниках он порождал бы теплоту, которая уничтожалась бы разве только охлаждением в местах соприкосновения металлов. Во всяком случае получилось бы неравномерное распределение теплоты; и точно так же ток мог бы, без притока энергии извне, непрерывно приводить в действие электромагнитный двигатель и производить таким образом работу, что невозможно, так как при неподвижном соединении металлов – например, путем спайки их – и в местах контакта не могло бы уже быть никаких таких изменений, которые компенсировали бы эту работу»[367 - Кн. I, стр. 44–45.].
Но не довольствуясь теоретическим и экспериментальным доказательством того, что само по себе контактное электричество металлов не способно породить ток, Видеман, как мы увидим, считает себя вынужденным выдвинуть особую гипотезу, чтобы устранить действенность его даже там, где оно могло бы, пожалуй, заявить о себе в форме тока.
Поищем поэтому другого пути, чтобы добраться от контактного электричества до тока. Вообразим себе вместе с Видеманом «два металла – скажем, цинковый и медный стержни, – спаянные между собой в одном конце; вообразим далее, что их свободные концы соединены при посредстве третьего тела, которое не действует электродвижущим образом по отношению к обоим металлам, а только проводит скопившиеся на их поверхностях противоположные электричества, так что они в нем нейтрализуют друг друга. В таком случае электрическая разъединительная сила непрерывно восстанавливала бы прежнюю разность напряжений, создавая таким образом в цепи длительный ток электричества, который мог бы совершать без всякого возмещения работу, что опять-таки невозможно. Поэтому не может быть никакого тела, которое только проводило бы электричество, не обнаруживая электродвижущего действия по отношению к другим телам»[368 - Кн. I, стр. 45.].
Мы, таким образом, оказываемся на старом месте: невозможность творить движение закрывает нам снова путь. Мы никогда не создадим тока при помощи контакта химически индифферентных тел, т. е. при помощи собственно контактного электричества. Вернемся же еще раз назад и попробуем пойти по третьему указываемому нам Видеманом пути.
«Погрузим, наконец, цинковую и медную пластинки в жидкость, которая содержит так называемое бинарное соединение и которая, следовательно, может распасться на две химически различные составные части, вполне насыщающие друг друга, – например, в разбавленную соляную кислоту (H + Cl) и т. п. В таком случае, согласно § 27, цинк заряжается отрицательным электричеством, а медь – положительным. При соединении металлов эти электричества выравниваются через посредство места контакта, через которое, следовательно, течет ток положительного электричества от меди к цинку. Но так как и появляющаяся при контакте этих двух металлов электрическая разъединительная сила переносит положительное электричество в том же направлении, то действия электрических разъединительных сил не уничтожают друг друга, как в замкнутой цепи одних только металлов. Таким образом, здесь возникает длительный ток положительного электричества, который течет в замкнутой цепи от меди через место ее контакта с цинком к последнему, а от цинка через жидкость к меди. Вскоре (§ 34 и сл.) мы вернемся к вопросу о том, в какой мере действительно участвуют в образовании этого тока имеющиеся в цепи отдельные электрические разъединительные силы. – Комбинацию из проводников, дающую подобный гальванический ток, мы называем гальваническим элементом, или гальванической цепью» (кн. I, стр. 45).
Итак, чудо совершилось. Благодаря одной только электрической разъединительной силе контакта, которая, согласно самому Видеману, не способна действовать без притока энергии извне, здесь получился длительный ток. И если бы для объяснения его у нас не было ничего другого, кроме вышеприведенного места из Видемана, то это оставалось бы действительно настоящим чудом. Что узнаём мы здесь об интересующем нас процессе?
1. Если цинк и медь погружены в какую-нибудь жидкость, содержащую в себе так называемое бинарное соединение, то, согласно § 27, цинк заряжается отрицательным электричеством, а медь – положительным. – Но во всем § 27 нет ни звука о каком бы то ни было бинарном соединении. В нем описывается только простой вольтов элемент, состоящий из цинковой и медной пластинок, между которыми положена смоченная какой-нибудь кислой жидкостью суконка, и рассматриваются – без упоминания о каких бы то ни было химических процессах – получающиеся при этом статически-электрические заряды обоих металлов. Таким образом, так называемое бинарное соединение протаскивается здесь контрабандным путем через заднюю дверь.
2. Здесь остается совершенно таинственной роль этого бинарного соединения. То обстоятельство, что оно «может распасться на две химически различные составные части, вполне насыщающие друг друга» (вполне насыщающие друг друга, после того как они распались?!), могло бы научить нас чему-нибудь новому лишь в том случае, если бы оно действительно распалось. Но об этом не сообщается ни слова, и мы должны поэтому пока допустить, что оно не распадается, как, например, в случае с парафином.
3. После того как цинк, таким образом, зарядился в жидкости отрицательным электричеством, а медь – положительным, мы приводим их (вне жидкости) в соприкосновение. Тотчас же «эти электричества выравниваются через посредство места контакта, через которое, следовательно, течет ток положительного электричества от меди к цинку». Мы опять-таки не узнаём, почему течет только ток «положительного» электричества в одном направлении, а не течет также и ток «отрицательного» электричества в противоположном направлении. Мы вообще не узнаём, что происходит с отрицательным электричеством, которое, однако, было до сих пор столь же необходимым, как и положительное: ведь действие электрической разъединительной силы заключалось именно в том, чтобы свободно противопоставить их друг другу. Теперь вдруг его устраняют, некоторым образом утаивают, и делают такой вид, будто существует одно только положительное электричество. Но вот на странице 51 мы опять читаем нечто совершенно противоположное, ибо здесь говорится, что «электричества соединяются в токе», и, следовательно, в нем течет как отрицательное, так и положительное электричество! Кто поможет нам выбраться из этой путаницы?
4. «Но так как и появляющаяся при контакте этих двух металлов электрическая разъединительная сила переносит положительное электричество в том же направлении, то действия электрических разъединительных сил не уничтожают друг друга, как в замкнутой цепи одних только металлов. Таким образом, здесь возникает длительный ток и т. д.».
Это сказано несколько сильно. Ибо, как мы увидим, Видеман несколькими страницами далее (стр. 52) доказывает нам, что при «образовании длительного тока… электрическая разъединительная сила в месте контакта металлов… должна быть недеятельной»; что не только имеется ток, даже если эта разъединительная сила действует в противоположном току направлении, вместо того чтобы переносить положительное электричество в том же направлении, но что она и в этом случае не компенсируется определенной долей разъединительной силы цепи и, значит, опять-таки недеятельна. Каким же образом Видеман может считать на стр. 45 электрическую разъединительную силу необходимым фактором образования тока, если на стр. 52 он отрицает ее деятельность при наличии тока, и к тому же при помощи специально для этой цели выставленной гипотезы?
5. «Таким образом, здесь возникает длительный ток положительного электричества, который течет в замкнутой цепи от меди через место ее контакта с цинком к последнему, а от цинка через жидкость к меди».
Но подобный длительный ток электричества «порождал бы в самих проводниках теплоту» и «мог бы приводить в действие электромагнитный двигатель и производить таким образом работу», что, однако, невозможно без притока энергии. А так как Видеман до сих пор ни единым звуком не обмолвился насчет того, происходит ли подобный приток энергии и откуда он происходит, то длительный ток по-прежнему в такой же мере остается чем-то невозможным, как и в обоих разобранных выше случаях.
Никто этого не чувствует сильнее, чем сам Видеман. Поэтому он благоразумно торопится обойти многочисленные щекотливые пункты этого удивительного объяснения образования тока, вознаграждая зато читателя на нескольких страницах всякого рода элементарными рассказиками насчет термических, химических, магнитных и физиологических действий этого все еще таинственного тока, причем иногда в виде исключения он даже впадает в совершенно популярный тон. Затем вдруг он продолжает (стр. 49):
«Теперь мы должны исследовать, как обнаруживают свое действие электрические разъединительные силы в замкнутой цепи из двух металлов и одной жидкости, например из цинка, меди, соляной кислоты.
Мы знаем, что составные части содержащегося в жидкости бинарного соединения (HCl) разделяются при протекании тока таким образом, что одна из них (H) освобождается на меди, а эквивалентное количество другой (Cl) освобождается на цинке, причем последняя соединяется с эквивалентным количеством цинка в ZnCl».
Мы знаем! Если мы это и знаем, то во всяком случае не от Видемана, который, как мы видели, не обмолвился до сих пор ни единым звуком насчет этого процесса. И далее, если мы и знаем что-нибудь насчет этого процесса, то именно то, что он не может происходить так, как это описывает Видеман.
При образовании из газообразного водорода и газообразного хлора одной молекулы НС1 освобождается количество энергии, равное 22 000 единиц теплоты (Юлиус Томсен)[369 - Здесь и в дальнейшем результаты термохимических измерений Ю. Томсена Энгельс приводит по книге А. Наумана «Руководство по общей и физической химии», Гейдельберг, 1877, стр. 639–646.]. Поэтому, чтобы снова освободить хлор из его соединения с водородом, надо доставить каждой молекуле HCl извне такое же количество энергии. Откуда же получает цепь эту энергию? Изложение Видемана ничего не говорит нам об этом. Потому постараемся разобраться в этом сами.