But before we turn our attention to the persons who made, and, after many failures and discouragements, successfully made this attempt, it will be advisable we should say something as to the principle on which their invention is founded.
The reader knows that gases and vapours, when imprisoned within a narrow space, do struggle as resolutely to escape as did Sterne's starling from his cage. Their force of pressure is enormous, and if confined in a closed vessel, they would speedily rend it into fragments. Let some water boil in a pipkin whose lid fits very tightly; in a few minutes the vapour or steam arising from the boiling water, overcoming the resistance of the lid, raises it, and rushes forth into the atmosphere.
Take a small quantity of water, and pour it into the hollow of a ball of metal. Then with the aid of a cork, worked by a metallic screw, close the opening of the ball hermetically, and place the ball in the heart of a glowing fire. The steam formed by the boiling water in the inside of the metallic bomb, finding no channel of escape, will burst through the bonds that sought to confine it, and hurl afar the fragments with a loud and dangerous explosion.
These well-known facts we adduce simply as a proof of the immense mechanical power possessed by steam when enclosed within a limited area. Now, the questions must have occurred to many, though they were themselves unable to answer them, – Why should all this force be wasted? Can it not be directed to the service and uses of man? In the course of time, however, human intelligence did discover a sufficient reply, and did contrive to utilize this astonishing power by means of the machine now so famous as the Steam Engine.
Let us take a boiler full of water, and bring it up to boiling point by means of a furnace. Attach to this boiler a tube, which guides the steam of the boiler into a hollow metallic cylinder, traversed by a piston rising and sinking in its interior. It is evident that the steam rushing through the tube into the lower part of the cylinder, and underneath the piston, will force the piston, by its pressure, to rise to the top of the cylinder. Now let us check for a moment the influx of the steam below the piston, and turning the stopcock, allow the steam which fills that space to escape outside; and, at the same time, by opening a second tube, let in a supply of steam above the piston: the pressure of the steam, now exercised in a downward direction, will force the piston to the bottom of its course, because there will exist beneath it no resistance capable of opposing the pressure of the steam. If we constantly keep up this alternating motion, the piston now rising and now falling, we are in a position to profit by the force of steam. For if the lever, attached to the rod of the piston at its lower end, is fixed by its upper to a crank of the rotating axle of a workshop or factory, is it not clear that the continuous action of the steam will give this axle a continuous rotatory movement? And this movement may be transmitted, by means of bands and pulleys, to a number of different machines or engines all kept at work by the power of a solitary engine.
This, then, is the principle on which the inventions of Papin, the Marquis of Worcester, Newcomen, and James Watt have been based.
The great astronomer Huyghens conceived the idea of creating a motive machine by exploding a charge of gunpowder under a cylinder traversed by a piston: the air contained in this cylinder, dilated by the heat resulting from the combustion of the powder, escaped into the outer air through a valve, whereupon a partial void existed beneath the piston, or, rather, the air considerably rarified; and from this moment the pressure of the atmospheric air falling on the upper part of the piston, and being but imperfectly counterpoised by the rarified air beneath the piston, precipitated this piston to the bottom of the cylinder. Consequently, said Huyghens, if to the said piston were attached a chain or cord coiling around a pulley, one might raise up the weights placed at the extremity of the cord, and so produce a genuine mechanical effect.
But Experiment, the touchstone of Physical Truth, soon revealed the deficiencies of an apparatus such as Huyghens had suggested. The air beneath the piston was not sufficiently rarified; the void produced was too imperfect. Evidently gunpowder was not the right agent. What was? Denis Papin answered, Steam. And the first Steam Engine ever invented was invented by this ingenious Frenchman.
Papin was born at Blois on the 22nd of August 1645. He died about 1714, but neither the exact date nor the place of his death is known. The lives of most men of genius are heavy with shadows, but Papin's career was more than ordinarily characterized by the incessant pursuit of the evil spirits of adversity and persecution. A Protestant, and devoutly loyal to his creed, he fled from France with thousands of his co-religionists, when Louis XIV. unwisely and unrighteously revoked the Edict of Nantes, which permitted the Huguenots to worship God after their own fashion. And it was abroad, in England, Italy, and Germany, that he realized the majority of his inventions, among which that of the Steam Engine is the most conspicuous.
In 1707 Papin constructed a steam engine on the principle we have already described, and placed it on board a boat provided with wheels. Embarking at Cassel on the river Fulda, he made his way to Münden in Hanover, with the design of entering the waters of the Weser, and thence repairing to England, to make known his discovery, and test its capabilities before the public. But the harsh and ignorant boatmen of the Weser would not permit him to enter the river; and when he indignantly complained, they had the barbarity to break his boat in pieces. This was the crowning misfortune of Papin's life. Thenceforward he seems to have lost all heart and hope. He contrived to reach London, where the Royal Society, of which he was a member, allowed him a small pittance.
In 1690 this ingenious man had devised an engine in which atmospheric vapour instead of steam was the motive agent. At a later period, Newcomen, a native of Dartmouth in Devonshire, conceived the idea of employing the same source of power.
But, previously, the value of steam, if employed in this direction, had occurred to the Marquis of Worcester, a nobleman of great ability and a quick imagination, who, for his loyalty to the cause of Charles I., had been confined in the Tower of London as a prisoner. On one occasion, while sitting in his solitary chamber, the tight cover of a kettle full of boiling water was blown off before his eyes; for mere amusement's sake he set it on again, saw it again blown off, and then began to reflect on the capabilities of power thus accidentally revealed to him, and to speculate on its application to mechanical ends. Being of a quick, ingenious turn of mind, he was not long in discovering how it could be directed and controlled. When he published his project – "An Admirable and Most Forcible Way to Drive up Water by Fire" – he was abused and laughed at as being either a madman or an impostor. He persevered, however, and actually had a little engine of some two horse power at work raising water from the Thames at Vauxhall; by means of which, he writes, "a child's force bringeth up a hundred feet high an incredible quantity of water, and I may boldly call it the most stupendous work in the whole world." There is a fervent "Ejaculatory and Extemporary Thanksgiving Prayer" of his extant, composed "when first with his corporeal eyes he did see finished a perfect trial of his water-commanding engine, delightful and useful to whomsoever hath in recommendation either knowledge, profit, or pleasure." This and the rest of his wonderful "Centenary of Inventions," only emptied instead of replenishing his purse. He was reduced to borrow paltry sums from his creditors, and received neither respect for his genius nor sympathy for his misfortunes. He was before his age, and suffered accordingly.
In 1698 his work was taken up by Thomas Savery, a miner, who, through assiduous labour and well-directed study, had become a skilful engineer. He succeeded in constructing an engine on the principle of the pressure of aqueous vapour, and this engine he employed successfully in pumping water out of coal mines. We owe to Savery the invention of a vacuum, which was suggested to him, it is said, in a curious manner: he happened to throw a wine-flask, which he had just drained, upon the fire; a few drops of liquor at the bottom of the flask soon filled it with steam, and, taking it off the fire, he plunged it, mouth downwards, into a basin of cold water that was standing on the table, when, a vacuum being produced, the water immediately rushed up into the flask.
In tracing this lineage of inventive genius, we next come to Thomas Newcomen, a blacksmith, who carried out the principle of the piston in his Atmospheric Engine, for which he took out a patent in 1705. It is but just to recognize that this engine was the first which proved practically and widely useful, and was, in truth, the actual progenitor of the present steam engine. It was chiefly used for working pumps. To one end of a beam moving on a central axis was attached the rod of the pump to be worked; to the other, the rod of the piston moving in the cylinder below. Underneath this cylinder was a boiler, and the two were connected by a pipe provided with a stop-cock to regulate the supply of steam. When the pump-rod was depressed, and the piston raised to the top of the cylinder, which was effected by weights hanging to the pump-end of the beam, the stop-cock was used to cut off the steam, and a supply of cold water injected into the cylinder through a water-pipe connected with the tank or cistern. The steam in the cylinder was immediately condensed; a vacuum created below the piston; the latter was then forced down by atmospheric pressure, bringing with it the end of the beam to which it was attached, and raising the other along with the pump-rod. A fresh supply of steam was admitted below the piston, which was raised by the counterpoise; and thus the motion was constantly renewed. The opening and shutting of the stop-cocks was at first managed by an attendant; but a boy named Potter, who was employed for this purpose, being fonder of play than work, contrived to save himself all trouble in the matter by fastening the handles with pieces of string to some of the cranks and levers. Subsequently, Beighton, an engineer, improved on this idea by substituting levers, acted on by pins in a rod suspended from the beam.
Properly speaking, Newcomen's engine was not a steam, but an atmospheric engine; for though steam was employed, it formed no essential feature of the contrivance, and might have been replaced by an air-pump. All the use that was made of steam was to produce a vacuum underneath the piston, which was pressed down by the weight of the atmosphere, and raised by the counterpoise of the buckets at the other end of the beam. Watt, in bringing the expansive force of steam to bear upon the working of the piston, may be said to have really invented the steam engine. Half a century before the little model came into Watt's hands, Newcomen's engine had been made as complete as its capabilities admitted of; and Watt struck into an entirely new line, and invented an entirely new machine, when he produced his Condensing Engine.
II. – JAMES WATT
There are few places in our country where human enterprise has effected such vast and marvellous changes within the century as the country traversed by the river Clyde. Where Glasgow now stretches far and wide, with its miles of swarming streets, its countless mills, and warehouses, and foundries, its busy ship-building yards, its harbour thronged with vessels of every size and clime, and its large and wealthy population, there was to be seen, a hundred years ago, only an insignificant little burgh, as dull and quiet as any rural market-town of our own day. There was a little quay at the Broomielaw, seldom used, and partly overgrown with broom. No boat over six tons' burden could get so high up the river, and the appearance of a masted vessel was almost an event. Tobacco was the chief trade of the town; and the tobacco merchants might be seen strutting about at the Cross in their scarlet cloaks, and looking down on the rest of the inhabitants, who got their livelihood, for the most part, by dealing in grindstones, coals, and fish – "Glasgow magistrates," as herrings are popularly called, being in as great repute then as now. There were but scanty means of intercourse with other places, and what did exist were little used, except for goods, which were conveyed on the backs of pack-horses. The caravan then took two days to go to Edinburgh – you can run through now between the two cities in little more than an hour. There is hardly any trade that Glasgow does not prosecute vigorously and successfully. You may see any day you walk down to the Broomielaw, vessels of a thousand tons' burden at anchor there, and the custom duties which were in 1796 little over £100, have now reached an amount exceeding one million!
Glasgow is indebted, in a great part, for the gigantic strides which it has made, to the genius, patience, and perseverance of a man who, in his boyhood, rather more than a hundred years ago, used to be scolded by his aunt for wasting his time, taking off the lid of the kettle, putting it on again, holding now a cup, now a silver spoon over the steam as it rose from the spout, and catching and counting the drops of water it fell into. James Watt was then taking his first elementary lessons in that science, his practical application of which in after life was to revolutionize the whole system of mechanical movement, and place an almost unlimited power at the disposal of the industrial classes.
When a boy, James Watt was delicate and sickly, and so shy and sensitive that his school-days were a misery to him, and he profited but little by his attendance. At home, though, he was a great reader, and picked up a great deal of knowledge for himself, rarely possessed by those of his years. One day a friend was urging his father to send James to school, and not allow him to trifle away his time at home. "Look how the boy is occupied," said his father, "before you condemn him." Though only six years old, he was trying to solve a geometrical problem on the floor with a bit of chalk. As he grew older he took to the study of optics and astronomy, his curiosity being excited by the quadrants and other instruments in his father's shop. By the age of fifteen he had twice gone through De Gravesande's Elements of Natural Philosophy, and he was also well versed in physiology, botany, mineralogy, and antiquarian lore. He was further an expert hand in using the tools in his father's workshop, and could do both carpentry and metal work. After a brief stay with an old mechanic in Glasgow, who, though he dignified himself with the name of "optician," never rose beyond mending spectacles, tuning spinets, and making fiddles and fishing tackle, Watt went at the age of eighteen to London, where he worked so hard, and lived so sparingly in order to relieve his father from the burden of maintaining him, that his health suffered, and he had to recruit it by a return to his native air. During the year spent in the metropolis, however, he managed to learn nearly all that the members of the trade there could teach, and soon showed himself a quick and skilful workman.
In 1757 we find the sign of "James Watt, Mathematical Instrument Maker to the College," stuck up over the entrance to one of the stairs in the quadrangle of Glasgow College. But though under the patronage of the University, his trade was so poor, that thrifty and frugal as he was, he had a hard struggle to live by it. He was ready, however, for any work that came to hand, and would never let a job go past him. To execute an order for an organ which he accepted, he studied harmonics diligently, and though without any ear for music, turned out a capital instrument, with several improvements of his own in its action; and he also undertook the manufacture of guitars, violins, and flutes. All this while he was laying up vast stores of knowledge on all sorts of subjects, civil and military engineering, natural history, languages, literature, and art; and among the professors and students who dropped into his little shop to have a chat with him, he soon came to be regarded as one of the ablest men about the college, while his modesty, candour, and obliging disposition gained him many good friends.
Among his multifarious pursuits, Watt had experimented a little in the powers of steam; but it was not till the winter of 1763-4, when a model of Newcomen's engine was put into his hands for repair, that he took up the matter in earnest. Newcomen's engine was then about the most complete invention of its kind; but its only value was its power of producing a ready vacuum, by rapid condensation on the application of cold; and for practical purposes was neither cheaper nor quicker than animal power. Watt, having repaired the model, found, on setting it agoing, that it would not work satisfactorily. Had it been only a little less clumsy and imperfect, Watt might never have regarded it as more than the "fine plaything," for which he at first took it; but now the difficulties of the task roused him to further efforts. He consulted all the books he could get on the subject, to ascertain how the defects could be remedied; and that source of information exhausted, he commenced a series of experiments, and resolved to work out the problem for himself. Among other experiments, he constructed a boiler which showed by inspection the quantity of water evaporated in a given time, and thereby ascertained the quantity of steam used in every stroke of the engine. He found, to his astonishment, that a small quantity of water in the form of steam heated a large quantity of water injected into the cylinder for the purpose of cooling it; and upon further examination, he ascertained the steam heated six times its weight of well water up to the temperature of the steam itself (212°). After various ineffectual schemes, Watt was forced to the conclusion that, to make a perfect steam engine, two apparently incompatible conditions must be fulfilled – the cylinder must always be as hot as the steam that came rushing into it, and yet, at each descent of the piston, the cylinder must become sufficiently cold to condense the steam. He was at his wit's end how to accomplish this task, when, as he was taking a walk one afternoon, the idea flashed across his mind that, as steam was an elastic vapour, it would expand and rush into a previously exhausted place; and that, therefore, all he had to do to meet the conditions he had laid down, was to produce a vacuum in a separate vessel, and open a communication between this vessel and the cylinder of the steam-engine at the moment when the piston was required to descend, and the steam would disseminate itself and become divided between the cylinder and the adjoining vessel. But as this vessel would be kept cold by an injection of water, the steam would be annihilated as fast as it entered, which would cause a fresh outflow of the remaining steam in the cylinder, till nearly the whole of it was condensed, without the cylinder itself being chilled in the operation. Here was the great key to the problem; and when once the idea of separate condensation was started, many other subordinate improvements, as he said himself, "followed as corollaries in rapid succession, so that in the course of one or two days the invention was thus far complete in his mind".
It cost him ten long weary years of patient speculation and experiment, to carry out the idea, with little hope to buoy him up, for to the last he used to say "his fear was always equal to his hope," – and with all the cares and embarrassments of his precarious trade to perplex and burden him. Even when he had his working model fairly completed, his worst difficulties – the difficulties which most distressed and harassed the shy, sensitive, and retiring Watt – seemed only to have commenced. To give the invention a fair practical trial required an outlay of at least £1000; and one capitalist, who had agreed to join him in the undertaking, had to give it up through some business losses. Still Watt toiled on, always keeping the great object in view, – earning bread for his family (for he was married by this time), by adding land-surveying to his mechanical labours, and, in short, turning his willing hand to any honest job that offered.
He got a patent in 1769, and began building a large engine; but the workmen were new to the task, and when completed, its action was spasmodic and unsatisfactory. "It is a sad thing," he then wrote, "for a man to have his all hanging by a single string. If I had wherewithal to pay for the loss, I don't think I should so much fear a failure; but I cannot bear the thought of other people becoming losers by my scheme, and I have the happy disposition of always painting the worst." And just then, to make matters still more gloomy, he learned that some rascally linen-draper in London was plagiarizing the great invention he had brought forth in such sore and protracted travail. "Of all things in the world," cried poor Watt, sick with hope deferred, and pressed with little carking cares on every side, "there is nothing so foolish as inventing."
When nearly giving way to despair, and on the point of abandoning his invention, Watt was fortunate enough to fall in with Matthew Boulton, one of the great manufacturing potentates of Birmingham, an energetic, far-seeing man, who threw himself into the enterprise with all his spirit; and the fortune of the invention was made. An engine, on the new principle, was set up at Soho; and there Boulton and Watt sold, as the former said to Boswell, "what all the world desires to have, Power;" – the infinite power that animates those mighty engines, which —
"England's arms of conquest are,
The trophies of her bloodless war:
Brave weapons these.
Victorious over wave and soil,
With these she sails, she weaves, she tills,
Pierces the everlasting hills,
And spans the seas."
Watt's engine, once fairly started, was not long in making its way into general use. The first steam-engine used in Manchester was erected in 1790; and now it is estimated that in that district, within a radius of ten miles, there are in constant work more than fifty thousand boilers, giving a total power of upwards of one million horses. And the united steam power of Great Britain is considered equal to the manual labour of upwards of four hundred millions of men, or more than double the number of males on the face of the earth. From the factory at Soho, Watt's improved engines were dispersed all over the country, especially in Cornwall – the firm receiving the value of a third part of the coal saved by the use of the new machine. In one mine, where there were three pumps at work, the proprietors thought it worth while, it is said, to purchase the rights of the inventors, at the price of £2500 yearly for each engine. The saving, therefore, on the three engines, in fuel alone, must have been at least £7500 a year.
In the first year of the present century, Watt withdrew himself entirely from business; but though he lived in retirement, he did not let his busy mind get rusty or sluggish for want of exercise. At one time he took it into his head that his faculties were declining, and though upwards of seventy years of age, he resolved to test his mental powers by taking up some new subject of study. It was no easy matter to find one quite new to him, so wide and comprehensive had been his range of study; but at length the Anglo-Saxon tongue occurred to him, and he immediately applied himself to master it, the facility with which he did so, dispelling all doubt as to the failing of his stupendous intellect. He thus busied himself in various useful and entertaining pursuits, till close upon his death, which took place in 1819.
Extraordinary as was Watt's inventive genius, his wide range of knowledge, theoretic and practical, was equally so. Great as is the "idea" with which his name is chiefly associated, he was not a man of one idea, but of a thousand. There was hardly a subject which came under his notice which he did not master; and, as was said of him, "it seemed as if every subject casually started by him had been that he had been occupied in studying." He had no doubt a rapid faculty of acquiring knowledge; but he owed the versatility and copiousness of his attainments above all to his unwearied industry. He was always at work on something or other, and he may truly be called one of those who —
"Could Time's hour-glass fall,
Would, as for seed of stars, stoop for the sand,
And by incessant labour gather all."
In a recent volume of memoirs by Mrs. Schimmel Pennick, we find the following graphic sketch of this extraordinary man: – "He was one of the most complete specimens of the melancholic temperament. His head was generally bent forward or leaning on his hand in meditation, his shoulders stooping, and his chest falling in, his limbs lank and unmuscular, and his complexion sallow. His utterance was slow and impassioned, deep and low in tone, with a broad Scotch accent; his manners gentle, modest, and unassuming. In a company where he was not known, unless spoken to, he might have tranquilly passed the whole time in pursuing his own meditations. When he entered the room, men of letters, men of science, many military men, artists, ladies, and even little children, thronged around him. I remember a celebrated Swedish artist being instructed by him that rat's whiskers made the most pliant painting-brushes; ladies would appeal to him on the best modes of devising grates, curing smoking chimneys, warming their houses, and obtaining fast colours."
His reading was singularly extensive and diversified. He perused almost every work that came in his way, and used to say that he never opened a book, no matter what its subject or worth, without learning something from it. He had a vivid imagination, was passionately fond of fiction, and was a very gifted story-teller himself. When a boy, staying with his aunt in Glasgow, he used every night to enthral the attention of the little circle with some exciting narrative, which they would not go to bed till they had heard the end of; and kept them in such a state of tremor and excitement, that his aunt used to threaten to send him away.
Since Watt's time, innumerable patents have been taken out for improvements in the steam engine; but his great invention forms the basis of nearly all of them, and the alterations refer rather to details than principles of action. The application of steam to locomotive purposes, however, led to the construction of the high pressure engine, in which the cumbrous condensing apparatus is dispensed with, and motion imparted to the piston by the elastic power of the steam being greater than that of the atmosphere.
The Manufacture of Cotton
"Are not our greatest men as good as lost? The men who walk daily among us, clothing us, warming us, feeding us, walk shrouded in darkness, mere mythic men." – Carlyle.
I. – KAY AND HARGREAVES
On the 3d of May 1734, there was a hanging at Cork which made a good deal more noise than such a very ordinary event generally did in those days. There was nothing remarkable about the malefactor, or the crime he had committed. He was a very commonplace ruffian, and had earned his elevation to the gallows by a vulgar felony. What was remarkable about the affair was, that the woollen weavers of Cork, being then in a state of great distress from want of work, dressed up the convict in cotton garments, and that the poor wretch, having once been a weaver himself, "employed" the last occasion he was ever to have of addressing his fellow creatures, by assuring them that all his misdeeds and misfortunes were to be traced to the "pernicious practice of wearing cottons." "Therefore, good Christians," he continued, "consider that if you go on to suppress your own goods, by wearing such cottons as I am now clothed in, you will bring your country into misery, which will consequently swarm with such unhappy malefactors as your present Object is; and the blood of every miserable felon that will hang after this warning from the gallows will lie at your doors."
All which sayings were no doubt greatly applauded by the disheartened weavers on the spot, and much taken to heart by the citizens and gentry to whom they were addressed.
This is only one out of the many illustrations which might be drawn from the chronicles of those days, of the prejudice and discouragement cotton had to contend against on its first appearance in this country. Prohibited over and over again, laid under penalties and high duties, treated with every sort of contumely and oppression, it had long to struggle desperately for the barest tolerance; yet it ended by overcoming all obstacles, and distancing its favoured rival wool. Returning good for evil, cotton now sustains one-sixth of our fellow-countrymen, and is an important mainstay of our commerce and manufactures.
First imported into Great Britain towards the middle of the seventeenth century, cotton was but little used for purposes of manufacture till the middle of the eighteenth. The settlement of some Flemish emigrants in Lancashire led to that district becoming the principal seat of the cotton manufacture; and probably the ungenerous nature of its soil induced the people to resort to spinning and weaving to make up for the unprofitableness of their agricultural labours.
A nobler monument of human skill, enterprise, and perseverance, than the invention of cotton-spinning machinery is hardly to be met with; but it must also be owned that its history, encouraging as it is in one aspect, is in another sad and humiliating to the last degree. It is difficult at first to credit the uniform ingratitude and treachery which the various inventors met with from the very men whom their contrivances enriched. "There is nothing," said James Watt in the crisis of his fortunes, worn with care, and sick with hope deferred – "there is nothing so foolish as inventing;" and with far more reason the inventors of cotton-spinning machines could echo the mournful cry. It is sad to think that so proud a chapter of our history should bear so dark a stain.
In 1733 the primitive method still prevailed of spinning between the finger and thumb, only one thread at a time; and weaving up the yarn in a loom, the shuttle of which had to be thrown from right to left and left to right by both hands alternately. In that year, however, the first step was made in advance, by the invention of the fly-shuttle, which, by means of a handle and spring, could be jerked from side to side with one hand. This contrivance was due to the ingenuity of John Kay, a loom-maker at Colchester, and proved his ruin. The weavers did their best to prevent the use of the shuttle, – the masters to get it used, and to cheat the inventor out of his reward. Poor Kay was soon brought low in the world by costly law-suits, and being not yet tired of inventing, devised a rude power-loom. In revenge a mob of weavers broke into his house, smashed all his machines, and would have smashed him too, had they laid hands on him. He escaped from their clutches, to find his way to Paris, and to die there in misery not long afterwards. Kay was the first of the martyrs in this branch of invention. James Hargreaves was the next.
The use of the fly-shuttle greatly expedited the process of weaving, and the spinning of cotton soon fell behind. The weavers were often brought to a stand-still for want of weft to go on with, and had to spend their mornings going about in search of it, sometimes without getting as much as kept them busy for the rest of the day. The scarcity of yarn was a constant complaint; and many a busy brain was at work trying to devise some improvement on the common hand-wheel. Amongst others, James Hargreaves, an ingenious weaver at Standhill, near Blackburn, who had already improved the mode of cleaning and unravelling the cotton before spinning, took the subject into consideration. One day, when brooding over it in his cottage, idle for want of weft, the accidental overturning of his wife's wheel suggested to him the principle of the spinning-jenny. Lying on its side, the wheel still continued in motion – the spindle being thrown from a horizontal into an upright position; and it occurred to him that all he had got to do was to place a number of spindles side by side. This was in 1764, and three years afterwards Hargreaves had worked out the idea, and constructed a spinning frame, with eight spindles and a horizontal wheel, which he christened after his wife Jenny, whose wheel had first put him in the right track. Directly the spinners of the locality got knowledge of this machine that was to do eight times as much as any one of them, they broke into the inventor's cottage, destroyed the jenny, and compelled him to fly for the safety of his life to Nottingham. He took out a patent, but the manufacturers leagued themselves against them. Sole, friendless, penniless, he could make no head against their numbers and influence, relinquished his invention, and died in obscurity and distress ten years after he had the misfortune to contrive the spinning-jenny.
The history of the cotton manufacture now becomes identified with the lives of Arkwright, Crompton, and Cartwright – the inventors of the water-frame, the mule, and the power-loom.
II. – SIR RICHARD ARKWRIGHT
Somewhere about the year 1752, any one passing along a certain obscure alley in Preston, then a mere village compared with the prosperous town into which it has since expanded, might have observed projecting from the entrance to the underground flat of one of the houses, a blue and white pole, with a battered tin plate dangling at the end of it, the object of which was to indicate that if he wanted his hair cut or his chin shaved, he had only to step down stairs, and the owner of the sign would be delighted to accommodate him. But either people in that quarter had little or no superfluous hair to get rid of, or they had it taken off elsewhere; for Dicky Arkwright, the barber in the cellar, for whom the pole and plate stood sponsor in the upper world, had few opportunities of displaying his talents, and spent most of his time whetting his razors on a long piece of leather, one end of which was nailed to the wall, while the other was drawn towards him, and keeping the hot water and the soap ready for the customers who seldom or never came. This sort of thing did not suit Dick's notions at all; for he was of an active temperament, and besides feeling very dull at being so much by himself all day, he pulled rather a long face when he counted out the scanty array of coppers in the till after shutting up shop for the night. As he sat one night, before tumbling into his truckle bed that stood in a recess in one corner of the dingy little room, meditating on the hardness of the times, a bright idea struck him; and the next morning the attractions of the sign-pole were enhanced by a staring placard, bearing the urgent invitation: —
COME TO THE