Оценить:
 Рейтинг: 0

Triumphs of Invention and Discovery in Art and Science

Автор
Год написания книги
2017
<< 1 ... 4 5 6 7 8 9 10 11 >>
На страницу:
8 из 11
Настройки чтения
Размер шрифта
Высота строк
Поля

"Whilst Mr. Cooke is entitled to stand alone as the gentleman to whom this country is indebted for having practically introduced and carried out the electric telegraph as a useful undertaking, promising to be a work of national importance; and Professor Wheatstone is acknowledged as the scientific man whose profound and successful researches had already prepared the public to receive it as a project capable of practical application, – it is to the united labours of two gentlemen so well qualified for mutual assistance, that we must attribute the rapid progress which this important invention has made during the five years since they have been associated."

Shortly after the taking out of a patent, wires were laid down between Euston Square Terminus and Camden Town Station, on the North-Western Railway; and the new telegraph was subjected to trial. Late in the evening of the 25th July 1837, in a dingy little room in one of the Euston Square offices, Professor Wheatstone sat alone, with a hand on each handle of the signal instrument, and an anxious eye upon the dial, with its needles as yet in motionless repose. In another little room at the Camden Town Station, Mr. Cooke was seated in a similar position before the instrument at the other end of the wires, along with Mr., now Sir Charles Fox, Robert Stephenson, and some other gentlemen. It was a trying, agitating moment for the two inventors, – how Wheatstone's pulse must have throbbed, and his heart beat, as he jerked the handle, broke the electric current, and sent the needles quivering on the dial; in what suspense he must have spent the next few minutes, holding his breath as though to hear his fellow's voice, and almost afraid to look at the dial lest no answer should be made; with what a thrill of joy must each have seen the needles wag knowingly and spell out their precious message, – the "All's well; thank God," that flashed from heart to heart, along the line of senseless wire. "Never," said Wheatstone, "did I feel such a tumultuous sensation before, as when all alone in the still room I heard the needles click; and as I spelled the words, I felt all the magnitude of the invention now proved to be practicable beyond cavil or dispute."

A few days before this trial of the telegraph in London, Steinheil, of Munich, is said to have had one of his own invention at work there; and it is a difficult question to decide whether he or Cooke and Wheatstone were the first inventors. It is, however, a question of no consequence, as each worked independently. Since the first English electric telegraph was patented, there have been a thousand and one other contrivances of a similar kind taken out; but it may be doubted whether, for practical purposes, the original apparatus, with the improvements which its own inventors have made on it, is not still the best of them all.

From being used merely to carry railway messages, the telegraph was brought into the service of the general public; the advantages of such almost instantaneous communication were readily appreciated; and eight years after Messrs. Cooke and Wheatstone took out their patent, lines of telegraph to the extent of 500 miles were in operation in England upon the original plan. In 1855 telegraphic correspondence had become so general, that the Electric Telegraph Company was started to supply the demand. In that establishment the Needle Telegraph of Wheatstone and Cooke is the one generally used, with the Chemical Recording Telegraph of Bain for special occasions. By means of the latter, blue lines of various lengths, according to an alphabet, are drawn upon a ribbon of paper, and as many as 20,000 words can be sent in an hour, though the ordinary rate is 100 per minute. In the purchase of patent rights alone, the Company have spent £170,000, and they are every year adding to the length of their wires. In June 1850 they had 6730 miles of wires, and despatched 29,245 messages a year. In December 1853 they had 24,340 miles of wires, and despatched 212,440 messages a-year. Their lines now extend over a much larger mileage, and convey a greatly increased number of messages. The Magnetic Telegraph Company have also a large extent of wires, and do a considerable business.

III. – THE SUBMARINE TELEGRAPH

The land telegraph having had such success, the next step was to carry the wires across the deep, and link continent to continent, – an all-important step for an island kingdom such as ours, with its legion of distant colonies. The success of a submerged cable between Gosport and Portsmouth, and of one across the docks at Hull, proved the feasibility of a water telegraph, at least on a small scale, and it was not long before more ambitious attempts were made. On the 28th of August 1850, a cable, 30 miles long, in a gutta percha sheathing, was stretched at the bottom of the straits between Dover and Cape Grisnez, near Calais. Messages of congratulation sped along this wire between England and France; and although a ridge of rocks filed the cable asunder on the French coast, the suspension of communication was only temporary. The link has once more been established, and is in daily use. The first news sent by the wire to England was of the celebrated coup d'etat of the 2d December, which cleared the way for Louis Napoleon's ascent of the throne. Numerous other cables have since been sunk beneath the waters; complete telegraphic communication has just been established between England and India, and will, no doubt, before long be extended to Australia.

The greatest enterprise of this kind, however, still remains unaccomplished – that is, the laying of the Atlantic cable. A company was started in 1856 to carry out this great enterprise, the governments of Great Britain and the United States engaging to assist them, not only with an annual subsidy of £10,000 a-year for twenty-five years, but to furnish the men and ships required for laying the cable from one side of the Atlantic to the other. The chief difficulty which engaged the attention of Mr. Wildman Whitehouse and the other agents of the notable enterprise was the enormous size of the cable which, it was thought, would be necessary. The general belief at that time was, that the greater the distance to be traversed, the larger must be the wire along which the electric current was to pass, and that the rate of speed would be in proportion to the size of the conductor. Mr. Whitehouse, however, thought it would be as well to begin by making sure that this was really the case, and that a monster cable was essential; and after some three thousand separate observations and experiments, was delighted to find that the difficulty which stared them in the face was imaginary. Instead of a large cable transmitting the current faster than a small one, he ascertained beyond a doubt, that the bigger the wire, the slower was the passage of the electricity. It would be needful, therefore, to make the cable only strong enough to stand the strain of its own weight, and heavy enough to sink to the bottom. A single wire would have been quite sufficient, but a strand of seven wires of the finest copper was used for the cable, so that the fracture of one of them might not interfere with the communication, – as long as one wire was left intact the current would proceed. A triple coating of gutta percha, to keep the sea from sucking out the electricity, and a thick coating of iron wire, to sink the cable to the bottom and give it strength, were added to the copper rope, and then the cable was complete. No less than 325,000 miles of iron and copper wire were woven into this great cable, – as much as might be wound thirteen times round the globe; and its weight was about a ton per mile. The length of the cable was 18,947 miles – some 600 miles being allowed to come and go upon, in case of accidents.

The end of July 1857 was selected for the sailing of the ships that were to lay the cable, as fogs and gales were then out of season, and no icebergs to be met with. On the 8th of August, the Agamemnon (English) and Niagara (American), with four smaller steamers to attend them, and each with half of the mighty cable in her hold, got up their steam and left Valentia Harbour. One end of the cable was carried by a number of boats from the Niagara on shore, where the Lord-Lieutenant was in waiting to receive it, and place it in contact with the batteries, which were arranged in a little tent upon the beach. A slight accident to the cable for a little while delayed the departure of the ships; but by the 10th they had got 200 miles out to sea, and so far the cable had been laid successfully. Messages passed and repassed between the ships and the shore. The next day the engineer discovering that too much cable was being paid out, telegraphed to the people on board to put a greater grip on it; the operation was clumsily managed, and the cable snapped, sinking to a depth of 12,000 feet.

Not disheartened, however, the Company replaced the lost portion of the cable; the Government again furnished ships and men, and the cable was actually laid at the bottom of the Atlantic from Valentia Bay to Trinity Harbour.

Addresses of congratulation passed between the Queen and the President of the States, and numerous messages were transmitted. But gradually the signals grew fainter and more faint, till they ceased altogether. The cable was stricken dumb. A little to the north of the fiftieth parallel of latitude, at the bottom of the Atlantic, where the plateau is unbroken by any great depression, some 1500 miles of the disabled cable were lying, on a soft bed of mud, which was constantly thickening, at a depth of from 10,000 to 15,000 feet.

The importance of telegraphic communication between England and the United States was, however, so obvious that its projectors were not to be daunted by the failure they had sustained. Nor was it altogether a failure. They had proved that a cable could be laid, and messages flashed through it. What was wanted was evidently a stronger cable, which should be less liable to injury, and more perfect in its insulation of the telegraphic wires.

From 1858 to 1864, the Company were engaged in the difficult task of raising fresh funds, and in endeavouring to secure grants from the British and American Governments. Their men of science, meanwhile, were devising improvements in the form of cable, and contriving fresh apparatus to facilitate its submersion. Eventually the Telegraph Construction and Maintenance Company, an union of the Gutta Percha Company with the celebrated firm of Glass and Elliott, constructed an entirely new cable, which was not only costlier, but thicker and stronger than the preceding one. The conductor, three hundred pounds per mile, and one-seventh of an inch thick, consisted of seven No. 18 copper wires, each one-twentieth of an inch in thickness. The core or heart of the cable, says a writer in "Chambers's Encyclopædia," was formed of four layers of gutta percha alternating with four of Chatterton's compound (a solution of gutta percha in Stockholm tar); the wire and conductor being seven hundred pounds per mile, and nine-twentieths of an inch thick. Outside this was a coating of hemp or jute yarn, saturated with a preservative composition; while the sheath consisted of ten iron wires, each previously covered with five tarred Manilla yarns. The whole cable was an inch and one eighth thick, weighed thirty-five and three-quarter hundredweights per mile, and was strong enough to endure a breaking strain of seven tons and three-quarters. During the various processes of manufacture, the electrical quality of the cable was tested to an unusual extent. The portions of finished core were tested by immersion in water at various temperatures; next submitted to a pressure of six hundred pounds to the square inch, to imitate the ocean pressure at so great depth; then the conducting power of the copper wire was tested by a galvanometer; and various experiments were also made on the insulating property of the gutta percha. The various pieces having been thus severely put to the proof, they were spliced end to end, and the joints or splicings tested. In a word, nothing was left undone that could insure the success or guarantee the stability of the new cable.

When completed, the cable measured two thousand three hundred miles, and weighed upwards of four thousand tons. It was felt that such a burden could only be intrusted to Brunel's "big ship," the Great Eastern. For this purpose three huge iron tanks were built, in the fore, middle, and aft holds of the vessel, each from fifty to sixty feet in diameter, and each twenty and a half feet in depth; and in these the cable was deposited in three vast coils.

On the 23rd of July 1865, the Great Eastern left Valentia, the submarine cable being joined end to end to a more massive shore cable, which was hauled up the cliff at Foilhummerum Bay, to a telegraph-house at the top. The electric condition of the cable was continually tested during the ship's voyage across the Atlantic; and more than once its efficiency was disturbed by fragments of wire piercing the gutta percha and destroying the insulation. At length on August 2nd, the cable snapped by overstraining, and the end sank to the bottom in two thousand fathoms water, at a distance of one thousand and sixty-four miles from the Irish coast. Attempts were made to recover it by dredging. A five-armed grapnel, suspended to the end of a stout iron-wire rope five miles long, was flung overboard; and when it reached the bottom, the Great Eastern steamed to and fro in the direction where the lost cable was supposed to be lying; but failure followed upon failure, and the cable was never once hooked. There remained nothing to be done but for the Great Eastern to return to England with the news of her non-success, and leaving (including the failure of 1857-8) nearly four thousand tons of electric cable at the bottom of the ocean.

The promoters of ocean telegraphy, however, were determined to be resolute to the end. A new Company was formed, new capital was raised, and a third cable manufactured, differing in some respects from the former. The outside jacket was made of hemp instead of jute; the iron wires of the sheath were galvanized, and the Manilla hemp which covered them was not tarred. Chiefly through the absence of the tar, the weight of the cable was diminished five hundred pounds per mile; while its strength or breaking strain was increased. A sufficient quantity of this improved cable was made to cross the Atlantic, with all due allowance for slack; and also a sufficient quantity of the 1865 cable to remedy the disaster of that year.

On July 13th, 1866, the Great Eastern once more set forth on her interesting voyage, accompanied by the steamers Terrible, Medway, and Albany, to assist in the submersion of the cable, and to act as auxiliaries whenever needed. The line of route chosen lay about midway between those of the 1858 and 1865 cables, but at no great distance from either. The Great Eastern exchanged telegrams almost continuously with Valentia as she steamed towards the American continent; and great were the congratulations when she safely arrived in the harbour of Heart's Content, Newfoundland, on the 27th.

Operations were next commenced to recover the end of the 1865 cable, and complete its submergence. The Albany, Medway, and Terrible were despatched on the 1st of August, to the point where, "deep down beneath the darkling waves," the cable was supposed to be lying, and on the 9th or 10th they were joined by the Great Eastern, when grappling was commenced, and carried on through the remainder of the month. The cable was repeatedly caught, and raised to a greater or less height from the ocean bed; but something or other snapped or slipped every time, and down went the cable again. At last, after much trial of patience, the end of the cable was safely fished up on September 1st; and electric messages were at once sent through to Valentia, just as well as if the cable had not had twelve months' soaking in the Atlantic. An additional length having been spliced to it, the laying recommenced; and on the 8th the squadron entered Heart's Content, having thus succeeded in laying a second line of cable from Ireland to America.

The two cables, the old and the new, continued to work very smoothly during the winter of 1866 and 1867; but in May 1867, the new cable was damaged by an iceberg, which drifted across it at a distance of about three miles from the Newfoundland shore. The injury was soon repaired; but again, in July 1867, the same cable broke at about fifty miles from Newfoundland.

The earlier cable continued to work for several years, but both cables gave way towards the close of the autumn of 1870. No special inconvenience was felt, however, as two years ago a French line of cable was laid down between Europe and America; the Great Eastern being again employed, and the operations being conducted under the superintendence of English electricians. The two British cables will probably be repaired in the spring of the present year (1871).

Submarine cables have multiplied recently, and almost every ocean flows over the mysterious wires which flash intelligence beneath the rolling waters from point to point of the civilized world. By a telegraph-cable, which is partly submarine, the India Office in Westminster is united with the Governor-General and his Council at Calcutta. There is also communication between Singapore and Australia, and the network of ocean telegraphy is being so rapidly extended that, before long, the British Government in the metropolis will be enabled to convey its instructions in a few hours to the administrative authorities in every British colony. And thus the words which the poet puts into the mouth of "Puck" will be nearly realized in a sense the poet never dreamed of – "I'll put a girdle round about the world in forty minutes."

The Silk Manufacture

I. – JOHN LOMBE

In the reign of the Emperor Justinian, a couple of Persian monks, on a religious mission to China, brought away with them a quantity of silkworms' eggs concealed in a piece of hollow cane, which they carried to Constantinople. There they hatched the eggs, reared the worms, and spun the silk, – for the first time introducing that manufacture into Europe, and destroying the close monopoly which China had hitherto enjoyed. From Constantinople the knowledge and the practice of the art gradually extended to Greece, thence to Italy, and next to Spain. Each country, as in turn it gained possession of the secret, strove to preserve it with jealous care; but to little purpose. A secret that so many thousands already shared in common, could not long remain so, although its passage to other countries might be for a time deferred. France and England were behind most of the other states of Europe in obtaining a knowledge of the "craft and mystery." The manufacture of silk did not take root in France till the reign of Francis I.; and was hardly known in England till the persecutions of the Duke of Parma in 1585 drove a great number of the manufacturers of Antwerp to seek refuge in our land. James I. was very anxious to promote the breed of silkworms, and the production of silken fabrics. During his reign a great many mulberry-trees were planted in various parts of the country – among others, that celebrated one in Shakspeare's garden at Stratford-on-Avon – and an attempt was made to rear the worm in our country, which, however, the ungenial climate frustrated. Silk-throwsters, dyers, and weavers were brought over from the Continent; and the manufacture made such progress that, by 1629, the silk-throwsters of London were incorporated, and thirty years after employed no fewer than 40,000 hands. The emigration from France consequent on the revocation of the Edict of Nantes (1685) added not only to the numbers engaged in the trade, but to the taste, skill, and enterprise with which it was conducted. It is not easy to estimate how deeply France wounded herself by the iniquitous persecution of the Protestants, or how largely the emigrants repaid by their industry the shelter which Britain afforded them.

Although the manufacture had now become fairly naturalized in England, it was restricted by our ignorance of the first process to which the silk was subjected. Up till 1718, the whole of the silk used in England, for whatever purpose, was imported "thrown," that is, formed into threads of various kinds and twists. A young Englishman named John Lombe, impressed with the idea that our dependence on other countries for a supply of thrown silk prevented us from reaping the full benefit of the manufacture, and from competing with foreign traders, conceived the project of visiting Italy, and discovering the secret of the operation. He accordingly went over to Piedmont in 1715, but found the difficulties greater than he had anticipated. He applied for admittance at several factories, but was told that an examination of the machinery was strictly prohibited. Not to be balked, he resolved, as a last resort, to try if he could accomplish by stratagem what he had failed to do openly. Disguising himself in the dress of a common labourer, he bribed a couple of the workmen connected with one of the factories, and with their connivance obtained access in secret to the works. His visits were few and short; but he made the best use of his time. He carefully examined the various parts of the machinery, ascertained the principle of its operation, and made himself completely master of the whole process of throwing. Each night before he went to bed he noted down everything he had seen, and drew sketches of parts of the machinery. This plot, however, was discovered by the Italians. He and his accomplices had to fly for their lives, and not without great difficulty escaped to a ship which conveyed them to England.

Lombe had not forgotten to carry off with him his note-book, sketches, and a chest full of machinery, and on his return home lost no time in practising the art of "throwing" silk. On a swampy island in the river Derwent, at Derby, he built a magnificent mill, yet standing, called the "Old Silk Mill." Its erection occupied four years, and cost £30,000. It was five storeys in height, and an eighth of a mile in length. The grand machine numbered no fewer than 13,384 wheels. It was said that it could produce 318,504,960 yards of organzine silk thread daily; but the estimate is no doubt exaggerated.

While the mill was building, Lombe, in order to save time and earn money to carry on the works, opened a manufactory in the Town Hall of Derby. His machinery more than fulfilled his expectations, and enabled him to sell thrown silk at much lower prices than were charged by the Italians. A thriving trade was thus established, and England relieved from all dependence on other countries for "thrown" silk.

The Italians conceived a bitter hatred against Lombe for having broken in upon their monopoly and diminished their trade. In revenge, therefore, according to William Hutton, the historian of Derby, they "determined his destruction, and hoped that of his works would follow." An Italian woman was despatched to corrupt her two countrymen who assisted Lombe in the management of the works. She obtained employment in the factory, and gained over one of the Italians to her iniquitous design. They prepared a slow poison, and administered it in small doses to Lombe, who, after lingering three or four years in agony, died at the early age of twenty-nine. The Italian fled; the woman was seized and subjected to a close examination, but no definite proof could be elicited that Lombe had been poisoned. Lombe was buried in great state, as a mark of respect on the part of his townsmen. "He was," says Hutton, "a man of quiet deportment, who had brought a beneficial manufactory into the place, employed the poor, and at advanced wages, – and thus could not fail to meet with respect; and his melancholy end excited much sympathy."

II. – WILLIAM LEE

In the Stocking Weavers' Hall, in Redcross Street, London, there used to hang a picture, representing a man in collegiate costume in the act of pointing to an iron stocking-frame, and addressing a woman busily knitting with needles by hand. Underneath the picture appeared the following inscription: "In the year 1589, the ingenious William Lee, A.M., of St. John's College, Cambridge, devised this profitable art for stockings (but, being despised, went to France), yet of iron to himself, but to us and to others of gold; in memory of whom this is here painted." As to who this William Lee was, and the way in which he came to invent the stocking-frame, there are conflicting stories, but the one most generally received and best authenticated is as follows: —

William Lee, a native of Woodborough, near Nottingham, was a fellow of one of the Cambridge Colleges. He fell in love with a young country lass, married her, and consequently forfeited his fellowship. A poor scholar, with much learning, but without money or the knowledge of any trade, he found himself in very embarrassed circumstances. Like many another "poor scholar," he might exclaim: —

"All the arts I have skill in,
Divine and humane;
Yet all's not worth a shilling;
Alas! poor scholar, whither wilt thou go?"

His wife, however, was a very industrious woman, and by her knitting contributed to their joint support. It is said – but the story lacks authentic confirmation – that when Lee was courting her, she always appeared so much more occupied with her knitting than with the soft speeches he was whispering in her ear, that her lover thought of inventing a machine that would "facilitate and forward the operation of knitting," and so leave the object of his love more leisure to converse with him. "Love, indeed," says Beckmann, "is fertile in invention, and gave rise, it is said, to the art of painting; but a machine so complex in its parts, and so wonderful in its effects, would seem to require longer and greater reflection, more judgment, and more time and patience than could be expected of a lover." But afterwards, when Lee, in his painfully enforced idleness, sat many a long hour watching his wife's nimble fingers toiling to support him, his mind again recurred to the idea of a machine that would give rest to her weary fingers. His cogitations resulted in the contrivance of a stocking-frame, which imitated the movements of the fingers in knitting.

Although the invention of this loom gave a great impulse to the manufacture of silk stockings in England, and placed our productions in advance of those of other countries, Lee reaped but little profit from it. He met with neglect both from Queen Elizabeth and James I.; and, not succeeding as a manufacturer on his own account, went to France, where he did very well until after the assassination of Henri IV., when he shared the persecutions of the Protestants, and died in great distress in Paris.

III. – JOSEPH MARIE JACQUARD

Joseph Marie Jacquard, the inventor of the loom which bears his name, and to whom the extent and prosperity of the silk manufacture of our time is mainly due, was born at Lyons in 1752, of humble parents, both of whom were weavers. His father taught him to ply the shuttle; but for education of any other sort, he was left to his own devices. He managed to pick up some knowledge of reading and writing for himself; but his favourite occupation was the construction of little models of houses, towers, articles of furniture, and so on, which he executed with much taste and accuracy. On being apprenticed to a type-founder, he exhibited his aptitude for mechanical contrivances by inventing a number of improved tools for the use of the workmen. On his father's death he set up as a manufacturer of figured fabrics; but although a skilful workman, he was a bad manager, and the end of the undertaking was, that he had to sell his looms to pay his debts. He married, but did not receive the dowry with his wife which he expected, and to support his family had to sell the house his father had left him, – the last remnant of his little heritage. The invention of numerous ingenious machines for weaving, type-founding, &c., proved the activity of his genius, but produced not a farthing for the maintenance of his wife and child. He took service with a lime-maker at Brest, while his wife made and sold straw hats in a little shop at Lyons. He solaced himself for the drudgery of his labours by spending his leisure in the study of machines for figure-weaving. The idea of the beautiful apparatus which he afterwards perfected began to dawn on him, but for the time it was driven out of his mind by the stirring transactions of the time. The whirlwind of the Revolution was sweeping through the land. Jacquard ardently embraced the cause of the people, took part in the gallant defence of Lyons in 1793, fled for his life on the reduction of the city, and with his son – a lad of sixteen – joined the army of the Rhine. His boy fell by his side on the field of battle, and Jacquard, destitute and broken-hearted, returned to Lyons. His house had been burned down; his wife was nowhere to be heard of. At length he discovered her in a miserable garret, earning a bare subsistence by plaiting straw. For want of other employment he shared her labours, till Lyons began to rise from its ruins, to recover its scattered population, and revive its industry. Jacquard applied himself with renewed energy to the completion of the machine of which he had, before the Revolution, conceived the idea; exhibited it at the National Exposition of the Products of Industry in 1801; and obtained a bronze medal and a ten years' patent.

During the peace of Amiens, Jacquard happened to take up a newspaper in a cabaret which he frequented, and his eye fell on a translated extract from an English journal, stating that a prize was offered by a society in London for the construction of a machine for weaving nets. As a mere amusement he turned his thoughts to the subject, contrived a number of models, and at last solved the problem. He made a machine and wove a little net with it. One day he met a friend who had read the paragraph from the English paper. Jacquard drew the net from his pocket saying, "Oh! I've got over the difficulty! see, there is a net I've made." After that he took no more thought about the matter, and had quite forgotten it, when he was startled by a summons to appear at the Prefectal Palace. The prefect received him very kindly, and expressed his astonishment that his mechanical genius should so long have remained in obscurity. Jacquard could not imagine how the prefect had discovered his mechanical experiments, and began vaguely to dread that he had got into some shocking scrape. He stammered out a sort of apology. The prefect was surprised he should deny his own talent, and said he had been informed that he had invented a machine for weaving nets. Jacquard owned that he had.

"Well, then, you're the right man, after all," said the prefect. "I have orders from the emperor to send the machine to Paris."

"Yes, but you must give me time to make it," replied Jacquard.

In a week or two Jacquard again presented himself at the palace with his machine and a half manufactured net. The prefect was eager to see how it worked.

"Count the number of loops in that net," said Jacquard, "and then strike the bar with your foot."

The prefect did so, and was surprised and delighted to see another loop added to the number.

"Capital!" cried he. "I have his majesty's orders, M. Jacquard, to send you and your machine to Paris."

"To Paris! How can that be? How can I leave my business here?"

"There is no help for it; and not only must you go to Paris, but you must start at once, without an hour's delay."

"If it must be, it must. I will go home and pack up a little bundle, and tell my wife about my journey, I shall be ready to start to-morrow."

"To-morrow won't do; you must go to-day. A carriage is waiting to take you to Paris; and you must not go home. I will send to your house for any things you want, and convey any message to your wife. I will provide you with money for the journey."

There was no help for it, so Jacquard got into the carriage, along with a gendarme who was to take charge of him, and wondered, all the way to Paris, what it all meant. On reaching the capital he was taken before Napoleon, who received him in a very condescending manner. Carnot, who was also present, could not at first comprehend the machine, and turning to the inventor, exclaimed roughly, "What, do you pretend to do what is beyond the power of man? Can you tie a knot in a stretched string?" Jacquard, not at all disconcerted, explained the construction of his machine so simply and clearly, as to convince the incredulous minister that it accomplished what he had hitherto deemed an impossibility.

Jacquard was now employed in the Conservatory of Arts and Manufactures to repair and keep in order the models and machines. At this time a magnificent shawl was being woven in one of the government works for the Empress Josephine. Very costly and complicated machinery was employed, and nearly £1000 had already been spent on it. It appeared to Jacquard that the shawl might be manufactured in a much simpler and less expensive manner. He thought that the principle of a machine of Vaucousin's might be applied to the operation, but found it too complex and slow. He brooded over the subject, made a great many experiments, and at last succeeded in contriving an improved apparatus.

<< 1 ... 4 5 6 7 8 9 10 11 >>
На страницу:
8 из 11