Онкологические клетки имеют аномалию в работе митохондрий, что обусловливает их анаэробный тип гликолиза. Все это предопределяет целесообразность применения такого типа оксигенаторов с целью перевода анаэробных онкологических клеток на более высокие уровни аэробности. Навязывание онкоклеткам перехода с анаэробного на аэробный уровень ослабляет их агрессивность (чрезмерно быстрый рост) и злокачественность. Опухоль становится менее опасной.
Кроме того, янтарная кислота (янтарка) не только усиливает катаболизм клеток, но и за счет своих специфических свойств помогает восстанавливать нарушенные энергетические процессы, когда они начинают подключать работу митохондрий. Очевидно, что эта специфическая сторона янтарной кислоты намного важнее, чем катаболические свойства других органических кислот.
Со своей стороны отмечу, что это хорошо согласовывается с понятием первичности мембранной стадии формирования предрака. Считаю более правильной трактовкой снижение чувствительности генов к субстратам и необходимости нескольких поколений регенераций, чтобы митохондрии смогли репарировать.
Также у митохондрий в клетке есть еще одна очень важная функция – они включают механизм апоптоза, генетически запрограммированного отмирания клеток. При «отключении» (снижении чувствительности) митохондрий отключается и апоптоз, раковые клетки становятся «бессмертными» и вытесняют со временем нормальные клетки из опухоли. Митохондрии, «реанимированные» с помощью DCA, снова вызывают апоптоз, и процесс развития и гибели клеток возвращается в нормальное русло. Репарированные клетки вытесняют со временем онкоклетки из опухоли.
Особенности комплекса натуральных фруктовых кислот
Преимуществом применения комплекса натуральных фруктовых кислот является то, что в нем присутствует самый полный набор натуральных кислот, в том числе и от цикла Кребса в митохондриях, которые тормозят гликолиз больных клеток и стимулируют работу митохондрий онкоклеток. Там, где появляются метаболиты аэробных процессов, анаэробные гликолизные процессы стихают. Органические метаболиты несут и сигнальную функцию, нужную для включения генов.
Высокая концентрация фруктовых кислот создает напряженное субстратное поле в цитоплазме клеток. Такая «напряженная ситуация» похожа на ту, когда для запуска «пробитого» генератора нужен более мощный стартер. Порог чувствительности каскада генов, реагирующий на данный субстрат, становится доступным для гомеостатического реагирования генов митохондрий, что и способно подключить неработающие в них нормально гены. Причем реагирует и подключается не часть генов, отвечающих каждый за свой субстрат, а весь комплекс, последовательный каскад разных генов, состоящих из батарей одинаковых генов, участвующих в энергетических процессах. Вновь заработавшие митохондрии способны к самовосстановлению и репарации. Очевидно, им для этого и нужна была такая помощь.
Есть доказательства, что митохондрии могут восстанавливать свои ДНК, но это становится возможным только при запуске механизма слияния двух митохондрий. У больных клеток этот механизм слияния и репарации не работает. В норме данный блок генов, каждый из которых состоит еще из многократно повторяющейся батареи одинаковых генов, запрограммирован на работу до тех пор, пока состояние субстратного поля не изменится и соотношение кислот и углеводов перейдет в одном случае в пользу углеводов, а в другом – кислот. Достигнутый градиент углеводов соответственно может затормозить работу контролирующих генов. В итоге резко перестроится работа митохондрий.
В то же время вводимый в лечение состав фруктовых кислот имеет преимущественно иной состав кислот (предназначенный для построения, синтеза) в отличие от тех, которые получаются в результате дыхания и метаболических распадов. Это не отбросы (как молочная, мочевая и тому подобные кислоты, являющиеся метаболитами неполноценного гликолизного обмена веществ), не продукты распада (катаболизма). Поэтому не все кислоты подходят. Только анаболитные кислоты для синтеза могут, насыщая клетки, полноценно запустить каскад неработающих генов.
В патогенезе онкологии животных клеток торможение работы митохондрий происходит не как следствие неких программ, а как аберрации[7 - Аберрация – отклонение от нормы; ошибки, нарушения, погрешности (лат. aberratio «уклонение, удаление, отвлечение»). – Примеч. ред.] на уровне мембран и митохондрий. Энергетическая мощность митохондрий слабеет из-за нарушений структуры мембран как клеточных, так и митохондриальных. Именно они определяют через геном качество и полноценность работы всей ферментной системы. Проницаемость мембран здесь аналогична «пробитому котлу», в котором резко упало давление, а автоматические клапаны (митохондрии) с трудом поддерживают норму давления, постепенно их электронные реле (митохондриальные ДНК) тоже выходят из строя.
Также страдает двусторонняя поляризация мембран, их буферная стойкость и полноценность ферментов, связанных с ней из-за недостаточно напряженной внутренней среды клеток, определяемой клеточной мембраной. Кроме того, из-за плохих мембран митохондрий их эффективность, производительность работы тоже снижается, они начинают работать вполсилы. Такие митохондрии вынуждены в порядке компенсации резко активизировать свою деятельность аналогично тому, как работает двигатель вразнос. В условиях сочетания недостатка антиоксидантов, буферных систем, защитных веществ в них может возобладать «пероксидный пожар», «энергетические перегревы», приводящие к ущербности ДНК митохондрий. Клетки как бы заходят в стаз, тупик, не реагируют на прежнее субстратное поле. Снижается их функциональная значимость, они менее чувствительны к стимулирующим факторам или более уязвимы для внешних воздействий. Именно повышение градиента субстратного поля, превосходящего уровень прежних гомеостатических констант, приводит к запуску оставшегося незапущенного урезанного каскада генов митохондрий. Они вновь подключаются к процессу.
Весь описанный процесс свойствен многим устаревающим тканям. Но это еще не онкология, а стартовая площадка, фон, необходимый для неогенеза[8 - Неогенез – правка генетического кода с целью задействования в построении организма аминокислот. – Примеч. ред.]. Сам же неогенез – качественный скачок перехода процесса в новое и уже необратимое и нерегулируемое состояние. Это означает, что в новом понимании неогенез – не разовый переход, не некая мутация клеток, как это трактовалось ранее, а целый ступенчатый процесс предрасполагающих переходов, накопления условий, базы, перерождений в органеллах клеток. Митохондрий в клетках может быть сотни, и сразу все они не могут переродиться. В последующем достаточно бросить в подготовленную для изменения почву еще и провоцирующий фактор, чтобы вызвать перерождение клеток. Для проявления неогенеза нужно сочетание предрасполагающих и провоцирующих факторов. Поэтому мною предложено ввести термин аберрации клеток взамен прежнего – мутации. А сами такие клетки правильнее называть аберрантными.
Чтобы вернуть такую новую устойчивую систему в исходное состояние метаболизма, нужны более сильные рычаги воздействия на их метаболизм. Нужно провести такую систему через целый цикл последовательных внутриклеточных саморепараций.
При этом для закрепления устойчивого результата необходимо одновременно восстанавливать и наружные мембраны клеток и митохондрий. Для этого и нужны полиненасыщенные жирные кислоты типа омега-3. Способствовать этому же будет восстановление внутриклеточной антиоксидантной системы защиты (селен, Q10).
Кроме упомянутых органических кислот, в растениях содержатся также многие другие кислоты – продукты окисления Сахаров (например, глюконовая, глюкуроновая и аскорбиновая кислоты).
Роль органических кислот в метаболизме клеток
В одном случае органические кислоты образуются в процессе дыхания и представляют собой продукты неполного окисления сахара. Такие кислоты из Сахаров ступенчато редуцируются до конечных своих продуктов: углекислоты и воды. Выхода свободных кислот за пределы цикла Кребса здесь нет.
В другом случае органические кислоты – исходный строительный материал для синтеза самых различных соединений – углеводов, аминокислот и жиров. В данном случае могут образовываться свободные кислоты, выходящие в цитоплазму и играющие там различные роли. С одной стороны, они являются метаболитами как дыхания, так и катаболизма, а с другой – субстратом для анаболизма. Высшей формы дыхательные процессы осуществляются в митохондриях, а простые гликолизы могут проходить в цитоплазме.
Имеются кислоты, которые могут быть преимущественно продуктом анаэробного процесса брожения, например, молочная кислота. Есть группа кислот, которые являются продуктом аэробного типа обмена веществ. Можно предполагать, что некоторые кислоты, являющиеся продуктом анаэробного процесса, для наших целей не подходят, так как будут только усугублять ситуацию, ведь онкоклетки их и так уже вырабатывают с избытком. Очевидно, что это свободные кислоты, выходящие за пределы клетки. В то же время практически нет таких веществ, которые в процессе метаболизма не были бы взаимозаменяемы: любой тип кислот может быть посредником анаболизма и катаболизма.
В практических целях важен вопрос: как с помощью кислот ускорить процессы катаболизма в онкоклетках? В поисках ответа уместно рассмотреть по отдельности все доказательства против этого, а также доводы в пользу нашего предположения.
Доводы против того, что с помощью кислот можно усилить катаболические процессы в онкоклетках
В норме в системах, стремящихся к устойчивости, они обычно всегда уравновешены. Сдвиги возможны только, например, под воздействием гормонов. Можно было бы полагать, что ускорение катаболизма в опухоли должно логично привести в ней к автоматическому повышению анаболизма, и наоборот. Это вызывает сомнение в возможности спровоцировать катаболизм в опухолях.
Сомнение в возможности фокального метаболического крена в области опухоли с помощью кислот может также вызвать и предположение об универсализме метаболизма, т. е. принципиальная возможность взаимозаменяемости субстратов: органических кислот, углеводов, белков, липидов.
В качестве веществ для энергетики и синтеза новых веществ (ассимиляция и анаболизм) клетки в принципе могут использовать как кислоты органические, так и щелочные вещества. В этом плане онкологические клетки не отличаются от обычных. Все взаимозаменяемо и регулируется потребностями данной ткани как и организма в целом. Поэтому кислоты в разных ситуациях могут пойти как в расход для энергетики, т. е. дыхания, так и для синтеза и процессов роста. Можно было бы предположить, что переизбыток кислот в опухоли может привести к перестройке метаболизма опухолевых клеток и переходу в состояние роста, анаболирование. Кроме того, даже в условиях голодания, когда организм переходит автоматически на катаболизм, опухоль способна избирательно перехватывать на себя даже малые остатки метаболитов, постоянно выделяемых другими тканями. Это означает, что не обязательно однозначно именно опухоль будет перенасыщаться кислотами.
Можно было бы предположить, что для опухоли меньшее значение имеет субстрат, которым она питается, а большее значение – потребность в непрерывном нерегулируемом росте. Очевидно, здесь имеется аналогия с некоторыми типами одноклеточных бактерий, которые могут активно расти в одном случае на кислых средах, а в другом – на щелочных: глицерин, спирт, сахар и др.
Геном клеток высших животных организмов имеет полный набор генов для существования как на различных кислых средах, так и на различных щелочных. В принципе опухолевые клетки могли бы существовать на средах противоположного типа.
Все сказанное требует рассмотреть особенности метаболизма онколеток и его взаимодействия с метаболизмом всего организма.
Одним из примеров взаимозаменяемости субстратов является неоглюкогенез[9 - Неоглюкогенез – усиление превращения белка в углеводы. – Примеч. ред.]. Подключение механизмов неоглюкогенеза могло бы означать, что форсирование процессов катаболизма в опухоли всегда имело бы ограничения из-за образующейся «дыры», утечки, когда энергетические процессы перетекают с одного вида субстрата на другой.
Но переход онкоклеток на новый тип субстрата приводит к вынужденному переходу на новые программы осуществления энергетики. Очевидно, это и является важным моментом, так как в митохондриях начинают подключаться новые линии генов, не испорченные еще по каким-либо причинам. Подключение к работе митохондрий заводит весь комплекс программ в геноме ядра клеток. Запускается огромное количество регулировочных программ, работающих в норме и тормозящих нерегулируемый рост онкоклеток.
Можно предположить, что такая ситуация могла бы существовать в онкотканях только в период поступления в них кислотного субстрата. Отмена такого перекоса привела бы онкоклетки в обратное состояние. Но тем не менее факт рассасывания опухолей известен, и очевидно, что его надо связывать с постепенной репарацией больных клеток, восстановлением клонового потомства с нормальными митохондриями и мембранами. Или, возможно, включаются механизмы элиминации, выбраковки таких клеток.
Хочу сразу отметить, что такая взаимозаменяемость субстратов реально легко осуществляется в здоровых тканях, стремящихся к сохранению своей устойчивости, равновесию метаболизма. В то же время для онкоклеток сохранять такую устойчивость на разных субстратах намного сложнее, учитывая их агрессивную «прожорливость» и расточительность, неэкономию субстратов, выход огромного количества отходов, продуктов полураспада: они вынуждены больше тратить, для того чтобы хоть что-то заново создать. При недостатке определенных веществ в них начинают преобладать процессы катаболизма над анаболизмом.
Сомнение может вызвать также возможность того, что опухоль можно локально пустить по пути катаболизма. Это связано с предположением, что в условиях недостатка поступления субстратов опухоль может все равно главенствовать и все до последнего перехватывать на себя. Также она может своими метаболитами разрушать окружающие ткани и вызывать в них катаболизм, а затем продукты их катаболизма перехватывать и переводить в свой метаболизм через механизмы неоглюкогенеза. Напомню следующий факт: даже в условиях лечебного голодания опухоль продолжает активно расти, что действительно подтверждает наше предположение. Задача здесь очевидно решается только обходными путями.
• Надо заставить опухоль минимально выделять катаболитные метаболиты – этого можно добиться чрезмерным применением антиоксидантов и оксигенаторов.
• Перенасыщать организм и опухоль органическими кислотами так, чтобы градиент насыщения ими субстратного поля был выше, чем поступление иных субстратов, «приходящих» из других тканей в результате процессов катаболизма в них.
Разгадка слабости онкоклеток
Разгадка, очевидно, кроется в их анаэробном метаболизме, т. е. в гликолизе. В случае подачи в онкоклетки избыточного количества органических кислот реакция их на них будет иная, чем у нормальных клеток. В данном случае перед такой онкоклеткой возникает дилемма: либо переходить на режим работы обычных клеток, либо усиливать свой катаболизм и идти по пути самоэлиминации.
Можно как контраргумент привести факт существования гусеничного червя в незрелом плоде яблока. Избыток кислот здесь ему не помеха, но ведь гусеница обладает аэробным метаболизмом.
Разгадка, оказывается, кроется в том, что для энергетических процессов клетки в итоге используют только одну группу веществ, а для метаболизма – почти весь спектр веществ. Наша задача в первую очередь воздействовать на энергетические процессы – перевести их с гликолиза на аэробный путь. В этом плане наша методика оксигенации, т. е. акселерация механизмов дыхания, подразумевает в первую очередь влияние на субстратное поле именно энергетических процессов, которые более зависимы от этого поля, чем последующие катаболические процессы. Поскольку метаболизм – вторичный процесс, он может существовать как на фоне гликолиза, так и на фоне аэробизма. Метаболические процессы более гибкие, легко используют неоглюкогенезные механизмы и менее зависимы от субстратного поля. Очевидно, анаболически-катаболические процессы в большей степени регулируются из генома ядра клетки, а энергетические – из генома митохондрий. Понимание различий этих механизмов рассеивает туман недоразумений и снимает все противоречия.
В теории предполагается, что в случае преобладания в онкоклетках субстратного поля, присущего аэробным процессам, гликолизные механизмы в них начинают захлебываться. Все дело в том, что в одном случае мы говорим об энергетическом субстратном поле, а в другом – о пластическом (строительном) субстратном поле.
В подтверждение этого допущения имеются данные профессора Попа[10 - В 1930 г. немецкий профессор Попп был выдвинут на получение Нобелевской премии за доказательство того, что злокачественные клетки, анаэробные патогенные бактерии и вирусы не могут жить в присутствии кислорода. Основным источником энергии для паразитов, онкоклеток является гликолиз (расщепление углеводов и сахара в бескислородных условиях). – Примеч. ред.], доказавшего, что злокачественные клетки, анаэробные патогенные бактерии и вирусы не могут жить в присутствии кислорода. Но, с ругой стороны, есть ряд работ, показывающих, что онкологические клетки даже в присутствии кислорода не способны воспользоваться им (аэробный гликолиз). Изменение энергетики в раковых клетках называют нарушением эффекта Пастера[11 - Снижение скорости потребления глюкозы и прекращение накопления лактата в присутствии кислорода носит название эффекта Пастера. Впервые это явление наблюдал Л. Пастер во время своих широко известных исследований роли брожения в производстве вина. – Примеч. ред.]
Все живые ткани, являющиеся метаболически активными, способны к анаэробному гликолизу, однако большинство их не гликолизирует в аэробных условиях. Этот эффект блокирования гликолиза со стороны дыхания и получил название эффекта Пастера. Уже упоминаемый мною другой ученый, Варбург, пришел к заключению, что раковые клетки отличаются от нераковых неспособностью подавлять гликолиз в присутствии кислорода.
Но присутствие кислорода в среде клеток еще не означает, что он может стать внутриклеточным субстратом, т. е. поглощаться клетками внутрь.
Можно предполагать, что любое увеличение кислот (кислотного субстрата) приводит к росту окислительных процессов и высвобождению кислорода внутри клетки. Последующее предположение: если наружный кислород не используется гликолизной клеткой, то избыток кислот все же насильно обеспечивает такие клетки кислородом внутри. В результате процесс может пойти по пути медленного «заведения» митохондрий за счет стартерной функции кислот. Но это тоже еще не факт.
Тем не менее феномен исхода раковой опухоли без ее некроза известен. Поэтому вторым возможным путем является форсирование катаболизма в онкоклетках без перехода их с гликолиза на дыхание. Ряд экспериментальных данных подтверждает репарации митохондрий и выход клеток из гликолиза.
«Ахиллесова пята» опухолей
Основной особенностью онкоклеток является то, что их обмен веществ идет намного быстрее, что приводит к усиленному поглощению питательных вещества из крови. Согласно некоторым источникам, они потребляют их чуть ли не в 10 раз больше, чем обычные клетки. Но и вредных отходов, метаболизма у них намного больше, что приводит к отравлению организма.
Я считаю, что появление онкологии всегда связано с сочетанием двух причин: провоцирующих (первичных, основных) факторов (например, вирусы) и сенсибилизирующих (вторичных, причинных) факторов (например, канцерогены). Если одного из факторов нет, то нет и онкологии. В тоже время отсутствие онкологических симптомов не означает, что в организме не присутствуют основные факторы. Если же их нет, то онкологическое заболевание невозможно в принципе.
Если в организме нет вторичных причин, невозможно проявление симптомов болезни, она никак не проявляется. Есть основания утверждать, что первичные провоцирующие онкологию факторы имеются у большей части населения. Однако для проявления болезни требуются многочисленные сенсибилизирующие факторы. Кроме них нужны еще и некие кофакторы – кислотность среды, состояние иммунитета, нервной системы, наличие дисбиоза и др.
В случае появления онкологии нормальные клетки организма перерождаются и изменяют свою природу – их организация становится сходной с бактериальными клетками: тот же обмен веществ, способность к постоянному размножению, отсутствие дифференциации по внешнему виду и функциям.
Основная особенность онкоклеток заключается в том, что у них появляется способность существовать и вести свой метаболизм почти без доступа кислорода.