Оценить:
 Рейтинг: 0

Фотокамеры

Год написания книги
2015
<< 1 2 3 4 >>
На страницу:
3 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля

Сетевые перлы:

Обсуждали мужики цифровые шумы, а острослов подытожил: «Полезное обсуждение. Как соберусь снимать шумы, прочитаю еще раз…»

Матрица представляет собой пластину с расположенными на ней сенселями – светочувствительными полупроводниковыми элементами. Каждый сенсель накрыт цветным фильтром в соответствии с системой записи информации о цвете – RGB. Эта система основана на разделении белого света солнца на три основных составляющих: красную (R – Red), зеленую (G – Green), синюю (B – Blue). Компьютер фиксирует информацию о градациях серого, полученную с каждого сенселя, регистрируя количество квантов света, преобразованного в электрический заряд. На основе полученных данных создаются пиксели – мельчайшие элементы цифрового изображения. Из миллионов пикселей прямоугольной формы, расположенных рядами столбцов, и состоит будущая фотография.

Уже много лет маркетологи производителей любительской фотоаппаратуры убеждают нас, что много пикселей – круто. Ежу вроде бы понятно: если сравнить два изображения одного и того же объекта, собранного из разного количества пикселей, детальнее будет то, которое состоит из большего количества точек. Если детализацию – тщательную проработку деталей изображения – считать главным достоинством изображения, то, выбирая фотоаппарат, следует голосовать рублем за мегапиксельных рекордсменов. Эта логическая цепочка была бы правильной, если бы ее авторы не утаивали часть важной для понимания свойств фотоаппаратуры информации, намеренно ее игнорируя. Нас дурят, ничего не сообщая в рекламных текстах о прямой зависимости качества изображения от размера матрицы, напрямую связанного с цифровым шумом.

Цифровой шум – это дефект изображения цифровых фотоаппаратов, который портит восприятие однородно окрашенных или выведенных в нерезкость участков изображения. Иногда его сравнивают с зернистостью пленки или фотографической вуалью.

Дело в том, что миниатюризация конечна. Большой датчик-сенсель работает лучше, чем крохотный, уже потому, что меньше греется. Повышение температуры токопроводящих материалов приводит к повышению электрического сопротивления внутри сенселей, и как следствие они формируют ложные сигналы, которые компьютером камеры преобразуются в цифровой шум.

Возникает цифровой шум при съемке в неблагоприятных условиях с использованием длинных выдержек или высоких значений чувствительности. На величину цифрового шума, прежде всего, влияют размер матрицы и количество сенселей на ее поверхности. При одинаковых размерах двух матриц больше шумит та, на которой больше сенселей. Различают яркостный шум и цветной, или хроматический:

– яркостный цифровой шум – хаотично расположенные светлые пятна на темном фоне изображения;

– цветной, или хроматический, цифровой шум, – яркие цветные, часто синие пятна на однородном темном фоне (см. фото 4а).

Фото 4а. Цифровой шум на выкадровке из фото 4б.

Существуют различные способы борьбы с цифровым шумом. Во время съемки можно включить функцию подавления шума, после съемки можно редактировать файл с помощью графических редакторов (см. фото 4б). К сожалению, все эти способы, так или иначе, уменьшают детализацию изображения, снижают его резкость.

Фото 4б. «Красные зонтики. Венеция»

Камера Nikon D3

Зум AF-S Nikkor 24–70/2,8 G ED IF

Чувствительность 2000 ISOВыдержка 1/25 сек.

Диафрагма 3,5

Экспокоррекция +0,33 EV

Фокусное расстояние 70 мм

Особенно сильно шумят матрицы, нашпигованные рекордным количеством сенселей. Для получения 12 млн пикселей на матрице должно быть втрое больше сенселей. Матрица 12-мегапиксельной мыльницы подобна вагону метро в час пик, где тесно, жарко и душно. Представьте, что те же самые люди поедут в пяти вагонах, а не в одном. Большинство сможет сесть и почитать газетки. Примерно так же обстоит дело и с сенселями полнокадровой матрицы профессиональной зеркалки. Тут датчики растут в размерах, перестают греться и работают без погрешностей даже в режиме съемки с высокой чувствительностью. Есть предел увеличения мегапиксельности, после которого начинает ухудшаться качество снимков.

Матрица и свойства оптики

Цифровой шум – не вся правда о кознях маркетологов. Есть еще один серьезный технический тормоз роста мегапиксельности – свойства оптики.

В создании изображения и его детализации объективы играют не последнюю роль. Хорошие объективы имеют высокую разрешающую способность, лучшие могут изобразить около ста раздельных точек на миллиметре поверхности матрицы. Представьте пейзаж, нарисованный высококачественным объективом на площади стандартной полноформатной матрицы размером 24х36 мм, а рядом ту же картинку, уменьшенную в пять-шесть раз на матрице мыльницы. Для получения одинаковой детализации оптика мыльницы должна была бы превосходить объектив зеркалки по разрешающей способности в пять раз – но это из области фантастики. В наше время объективы близки к совершенству, а увеличивать количество сенселей на маленьких матрицах имеет смысл, только согласовывая этот процесс с возможностями оптики. Сегодня лучшие результаты дают дорогие мыльницы с 10-мегапиксельными матрицами. Аппараты этого класса с большим количеством пикселей работают хуже.

Практические выводы:

– чем больше матрица, тем дороже камера и лучше качество картинки;

– не стоит покупать кропнутые камеры (цифрокомпакты и камерафоны) с рекордным количеством мегапикселей;

– оптимальное число мегапикселей на матрице кропнутой зеркалки сегодня около 16;

– полноформатной репортерской зеркальной камере, для которой важнейшим качеством является скорость съемки, за глаза хватает даже 12 мегапикселей для получения превосходных фотографий;

– полноформатные студийные зеркальные камеры уже сейчас переваривают 30 мегапикселей, обеспечивая рекордное разрешение, то есть максимальную детализацию изображения, однако при этом страдают показатели чувствительности, а также скорость съемки и обработки файлов процессором;

– среднеформатные камеры дают возможность получать немыслимые прежде детализацию, глубину цвета и плавность яркостных переходов, зато при попытке всерьез увеличить чувствительность начинают шуметь и зернить;

– особую песню стоит пропеть о нетрадиционном способе увеличения мегапиксельности, недавно придуманном для олимпусов. Топовую камеру Olympus OM-D E-M5 Mark II научили снимать сразу 8 кадров, смещая матрицу каждый раз в новое положение, а потом объединять всю полученную информацию в один кадр. Этот цирковой фокус позволяет снимать маленькой матрицей с кропом 2 сорокамегапиксельные файлы. Есть правда в этой сладкой сказке одна горчинка – снимать нужно с хорошего штатива и только неподвижные объекты.

Визирующие устройства

Визирующие устройства фотокамеры – это видоискатель или экран монитора (Live view), или и то и другое, показывающие границы будущего снимка, иногда резкость и параметры съемки.

У мыльниц есть только одно визирующее устройство – это экран монитора (Live view). Все остальные виды фотокамер – псевдозеркальные, зеркальные, среднеформатные, дальномерные – снабжены видоискателем и экраном монитора. У некоторых дорогих беззеркалок мониторы сенсорные. Они реагируют на прикосновение пальца, словно экраны смартфонов, и таким образом позволяют управлять наводкой на резкость и спуском затвора, а также перелистывать картинки при просмотре.

Типы затворов

Затвор – это устройство, с большой точностью отмеряющее время воздействия света на светочувствительную матрицу камеры, то есть выдержку. Прежде затворы были механическими, в цифровых фотоаппаратах – стали электронными. В ручных режимах и для расчетов экспозиции обычно имеется шкала выдержек с обозначением секунд: 8», 4», 2», 1». Цифры без надстрочных знаков означают доли секунды: 2, 4, 8, 15, 30, 60, 125, 250, 500, 1000, 2000, 4000, 8000, 16000 (например, 2 равно 1/2 секунды). В хороших аппаратах есть также положение затвора bulb, означающее, что затвор управляется вручную. Он будет открыт столько, сколько нажата кнопка спуска.

Затвор состоит из:

– заслонки в виде светонепроницаемых лепестков (или шторок, жалюзи, секторов, пластин с вырезами), прерывающих световой поток;

– механизма выдержек, который регулирует продолжительность экспонирования, то есть засветку матрицы;

– двигателя, обеспечивающего перемещение световых заслонок и приводящего в действие механизм выдержек.

В зависимости от места расположения заслонок различают затворы апертурные, когда световые заслонки расположены вблизи диафрагмы между линзами объектива, и фокальные, когда световые заслонки расположены вблизи фокальной плоскости объектива, непосредственно у светочувствительной матрицы.

По принципу действия затворы подразделяются на щелевые, когда в процессе срабатывания затвора открывается щель, которая перемещается от одной стороны кадрового окна к другой, пропуская свет к матрице, и центральные, когда световые заслонки открываются от центра объектива к краям, а закрываются в обратном направлении. Такой способ открывания светового отверстия обеспечивает экспонирование изображения одновременно на всей площади кадра. Центральные затворы монтируются внутри оправы объектива.

По конструкции световых заслонок затворы подразделяются на дисковые, гильотинные, лепестковые, шторные и ламельные. В современных фотоаппаратах чаще используются лепестковые, шторные и ламельные:

– лепестковые затворы относятся к апертурным. Их световые заслонки выполнены в виде тонких металлических или пластмассовых лепестков сложной формы, расположенных симметрично относительно оси объектива. Эти лепестки при срабатывании затвора поворачиваются вокруг осей, перпендикулярных плоскости светового отверстия объектива. По принципу действия относятся к центральным;

– шторные затворы относятся к фокальным, имеют световые заслонки в виде одной или двух металлических или тканевых шторок. Все шторные затворы щелевые. Обеспечивают экспонирование матрицы последовательно от одного края кадра к другому по мере перемещения открывающейся щели относительно кадрового окна, то есть постепенно;

– ламельные затворы относятся к фокальным, имеют световые заслонки в виде прямоугольных пластинок (ламелей), смонтированных перед кадровым окном фотоаппарата. Все ламельные затворы щелевые. При срабатывании затвора ламели собираются в стопку и открывают кадровое окно, через определенный промежуток времени другая группа ламелей закрывает кадровое окно.

Экспонометр и экспозиция

Экспонометр – прибор, измеряющий поток света, отраженный от снимаемых объектов и направленный к матрице аппарата. Экспонометры бывают автономные и встроенные в механизм фотокамеры.

Экспозиция – оптимальная доза света, необходимая для получения изображения на матрице камеры. Экспозиция равна количеству света, умноженному на время воздействия света на матрицу.

Фотоаппарат позволяет регулировать экспозицию, меняя светочувствительность, время засветки с помощью затвора или регулируя световой поток изменением диафрагмы (диаметра отверстия в объективе фотоаппарата).

Встроенные экспонометры могут замерять только отраженный от объекта поток света, и потому их показания зависят от яркости поля, на которое они направлены. Если объект светлее среднесерого, то есть отражает более 18 % света, показания прибора будут ошибочными. На практике в экспозицию потребуется внести плюсовую поправку. Если объект темнее среднесерого, в экспозицию необходимо будет внести минусовую поправку.
<< 1 2 3 4 >>
На страницу:
3 из 4