Оценить:
 Рейтинг: 0

Адаптируйся или умирай! 21 атрибут адаптивной организации. Путеводитель по лучшим практикам успешных и жизнеспособных компаний

Год написания книги
2021
Теги
<< 1 2 3 4 5 6 7 >>
На страницу:
4 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

Было установлено, что в таких системах могут спонтанно (без внешнего целенаправленного воздействия) возникать упорядоченные структуры, устойчивость которых обусловлена притоком энергии извне и способностью к ее диссипации (рассеиванию в окружающую среду).

Простой и впечатляющий пример возникновения упорядоченных структур – возникновение ячеек Бенара в нагреваемых жидкостях.

Французский физик Анри Бенар обнаружил, что подогрев тонкого слоя жидкости может привести к образованию упорядоченных структур: когда разница температур нижней и верхней поверхностей жидкости достигает определенного значения, возникает упорядоченная структура в виде конвективных ячеек в форме цилиндрических валов, по поверхности которых горячая жидкость поднимается вверх, а холодная опускается вниз.

Изначально неупорядоченный тепловой перенос вдруг приобретает структуру – упорядоченность. Но на этом все не заканчивается.

При изменении режима нагрева данная структура может разрушаться и на ее месте возникает новая, более сложная структура – в виде правильных шестигранных структур (похожих на медовые соты), в которых горячая жидкость поднимается по центру ячеек, а холодная опускается вдоль краев ячеек.

Таким образом оказалось, что эффект самоорганизации может возникать даже в жидкостях.

Более сложными примерами возникновения упорядоченных структур являются лазеры и реакция Белоусова – Жаботинского (известная также как «химические часы»).

Ключевой особенностью сложных диссипативных структур является то, что они, обмениваясь материей и энергией с внешней средой, могут переходить ко все более высоким степеням порядка и сложности.

Исследования показывают [Фритьоф Капра, «Паутина жизни. Новое научное понимание живых систем»], что диссипативные структуры развиваются, переходя к новым степеням порядка и сложности в результате бифуркаций – скачкообразных структурных перестроек. Диссипативные структуры способны уходить все дальше и дальше от состояния равновесия через последовательные бифуркации. Точками бифуркации при этом являются точки потери системой устойчивости, достигаемые через механизмы положительной[1 - Различают отрицательную (стабилизирующую) и положительную (усиливающую) обратную связь. В случае отрицательной обратной связи при возникновении отклонений от устойчивого режима в системе возникают взаимодействия, которые противодействуют первоначальному изменению и стремятся вернуть систему обратно в исходный режим. В случае положительной (усиливающей) обратной связи при возникновении отклонений от устойчивого режима возникают взаимодействия, которые способствуют нарастанию отклонений и толкают систему все дальше от устойчивого режима.] (усиливающей) обратной связи. В таких точках диссипативная структура либо разрушается, либо переходит к новым степеням порядка и сложности.

Толчками для структурных изменений в системе при этом являются акты ее взаимодействия с внешней средой. Но эти внешние воздействия лишь инициируют сам процесс перестройки, в то время как логика перестройки определяется внутренней структурой системы и историей её предыдущих изменений.

Таким образом, развитие систем как переход к новым степеням порядка и сложности есть не поиск положения равновесия, как может казаться, а наоборот – удаление от него. Системы развиваются как раскручивающийся маховик, в котором каждый оборот прибавляет скорости вращения. И, при этом, сложные системы в процессе своего развития периодически оказываются на границе потери устойчивости – однако, в отличие от простых, «жестких» систем, сложные самоорганизующиеся системы вовсе не обязательно разрушаются в точках потери устойчивости, но могут изменять свою структуру, переходя на новый виток развития (с дальнейшим еще большим удалением от положения равновесия).

Значит, история развития сложной самоорганизующейся системы – история про постоянное движение прочь от положения равновесия, про постоянный набор (в физических терминах) потенциальной энергии и снижение[2 - Замечу, если Вы вдруг здесь вспомнили про закон неубывания энтропии из курсов физики: энтропия не может понижаться только в изолированных (замкнутых) системах – в открытых системах энтропия может снижаться и степень порядка может нарастать.] энтропии (т. е. рост степени порядка).

Удивительным и новым здесь является то, что усиливающая обратная связь «вразнос», уводящая систему все дальше от положения равновесия, которая всегда считалась разрушительной в механике и кибернетике, в диссипативных структурах может оказываться источником структурных перестроек и возникновения новых уровней порядка и сложности.

Переход к новым степеням порядка и сложности по мере ухода от положения равновесия присущ только открытым системам, обменивающимся энергией и веществом с окружающей средой.

К чему всё это при обсуждении природы адаптивности бизнес-систем? Какие выводы можно сделать из вышесказанного относительно того, как обеспечить адаптивность организации? Зачем все эти академические заумствования? Так, наверное, спросите Вы.

Пытаясь «приземлить» описанное на бизнес-системы, мы приходим к следующему пониманию:

• Развитие адаптивной бизнес-системы есть процесс постоянного удаления от положения равновесия – пытаться сохранять статус-кво и попытки найти состояния, в которых можно долго стабильно существовать без постоянных внутренних перестроек – путь к угасанию;

• В процессе планомерного развития бизнес-система периодически оказывается в точках потери устойчивости, в которых она либо разрушается, либо переходит к новым степеням порядка и сложности, то есть обретает существенно новую структуру и внутреннюю логику деятельности. Таким образом, периодические внутренние кризисы по мере развития организации возникают не в результате неправильного управления, а носят фундаментальный характер. Проходя через такие кризисы, организация увеличивает свою «потенциальную энергию» и повышает степень порядка и сложности (т. е. понижает внутриорганизационную энтропию);

• Для того, чтобы организация могла развиваться, она должна иметь высокую степень открытости вовне – для различного рода взаимодействий и обмена интеллектуальными, социальными и финансовыми ресурсами с субъектами внешней среды: замкнутые внутри себя организации не способны развиваться.

Таким образом, постоянное движение все дальше от текущих состояний устойчивого существования, готовность по мере этого движения подходить к границам потери устойчивости и готовность реализовывать структурные перестройки при достижении этих границ, а также сохранение открытости вовне – необходимые базовые условия для того, чтобы организация была способна развиваться.

Обращение к теории диссипативных структур помогает нам понять логику развития, присущую сложным самоорганизующимся системам, но все же не отвечает на вопрос о том, как должна быть структурно устроена адаптивная организация (помимо того, что она должна иметь высокую степень открытости для взаимодействия с внешней средой).

Поэтому нам необходимо сделать второй шаг и обратиться к системной биологии, в центре внимания которой находятся вопросы структуры и системных свойств живых систем.

Почему понимание логики развития именно живых систем крайне важно для понимания природы адаптивности? Да потому, что живые системы – будь то отдельные организмы, экосистемы или биосфера в целом – являются эталоном адаптивности.

Если рассматривать биосферу Земли, то, глядя на процесс эволюции, мы как раз и увидим этот процесс постоянного перехода ко всё более упорядоченным и более сложным структурам как на уровне живых видов, так и на уровне экосистем.

И при этом абсолютно бесспорно то, что адаптивность – базовое свойство, присущее всем живым системам. Свидетельством этого является тот факт, что жизнь на Земле сумела пройти через величайшие катастрофы, так называемые великие биосферные кризисы, и при этом стать сильнее и структурно разнообразнее.

Вся история жизни есть история развития живых систем, которые всегда адаптировались к происходящим изменениям, например, циклическим изменениям климата или катаклизмам, вызванным столкновениями Земли с астероидами или кометами.

Только за последние 600 миллионов лет произошло шесть великих биосферных кризисов, в результате каждого из которых ушла в небытие существенная часть живых видов. Например, рубеж мезозоя и кайнозоя не пережило ни одно сухопутное существо весом более 8 кг. Но в результате таких кризисов «сеть» жизни, перестраиваясь и адаптируясь к новым условиям, продолжала развиваться.

Задаваясь вопросами о том, что из себя представляет любая живая система, будь то отдельный живой организм или целая экосистема, чилийские ученые Умберто Матурана и Франциско Варела создали концепцию автопоэза: «авто» означает «само», а «поэз» – «созидание»; таким образом, «автопоэз» означает «самосозидание» [Фритьоф Капра, «Паутина жизни. Новое научное понимание живых систем»].

Матурана и Варела определили структуру любой живой системы как автопоэзную сеть, в которой каждый элемент непрерывно участвует в создании или трансформации других элементов. То есть автопоэзная сеть – система, постоянно воспроизводящая саму себя: она создается своими элементами и, в свою очередь, создает эти элементы.

Примером автопоэзной сети является наш организм, в котором ни один внутренний орган не является жизнеспособным в отдельности, но эти органы, находясь в динамическом взаимодействии, обеспечивают жизнеспособность друг друга.

Подобные эффекты возникают и на уровне экосистем в целом: «зайцы» обеспечивают жизнеспособность «волков», а «волки» обеспечивают жизнеспособность «зайцев» (если хищники не будут убивать травоядных, то популяция тех может разрастись настолько, что все травоядные окажутся под угрозой в результате дефицита кормовой базы).

Примером автопоэзной структуры на микроуровне являются одноклеточные организмы. Любая клетка представляет собой довольно сложную систему, состоящую из множества элементов, выполняющих специфические функции. При этом ни один элемент не способен «жить» в отдельности – они существуют только в динамическом взаимодействии с друг с другом в целостной системе, которой и является клетка.

Вся живая природа выстроена по принципу сетей, в которых все равны и нет главных. Организм живого существа есть сеть взаимодействующих клеток. Живые существа являются элементами сетей, называемых экосистемами, в которых каждый вид имеет свои специфические функции и активно взаимодействует с другими видами.

Американский физик Фритьоф Капра на основе концепции автопоэза Матураны и Варелы, а также теории диссипативных структур Пригожина сформировал целостное описание живых систем, из которого можно выделить ряд ключевых присущих им характеристик [Фритьоф Капра, «Паутина жизни. Новое научное понимание живых систем»]. Капра определяет любую живую систему как автопоэзную сеть, являющуюся диссипативной структурой.

Согласно Капре, живые системы на протяжении всей своей жизни находятся вдали от состояния равновесия и приходят в равновесное состояние только со смертью. При этом важно отличать состояние равновесия от динамической устойчивости: большую часть времени любая живая система находится в состоянии динамической устойчивости, проходя через состояния потери устойчивости только в момент бифуркаций.

Развитие любой живой системы представляет собой существование в зоне устойчивости и движение к границе этой зоны по мере накопления предпосылок для изменений. При достижении границы зоны устойчивости живая система может либо разрушиться, либо перейти к новой структуре, в которой она способна снова находиться в состоянии устойчивости и развиваться дальше.

При этом предпосылки для изменений живой системы возникают в результате сопряжения с внешней средой. В результате таких изменений живые системы становятся более сложными, но при этом более жизнеспособными.

Суть сопряжения заключается в обмене веществом и энергией с внешней средой, а также в считывании информации из внешней среды и изменении собственного состояния в ответ на определенные сигналы. Причем то, что это за сигналы, в ответ на которые система должна изменять свое состояние, и как она должна изменять его, определяется внутренней логикой самой системы. Поэтому Капра говорит, что живые системы энергетически открыты, но организационно замкнуты и сохраняют свою идентичность в процессе изменений.

Простейшим примером сопряжения с внешней средой является поворот цветов вслед за движением солнца: система под названием «цветок» меняет свое состояние с целью получения максимально возможного количества солнечной энергии, а сигналом для поворота является информация об уменьшении солнечного потока.

Другой пример связан с человеческим организмом, меняющимся на протяжении всей жизни: три ключевых подсистемы организма – нервная, иммунная и эндокринная – меняются на протяжении всей жизни. Воздействие в виде попадания в организм чужеродных элементов – бактерий и вирусов – приводит к тому, что иммунная система находит ответ, самообучаясь и становясь все более сложной при этом (а может и не найти ответа, в результате чего весь организм и иммунная система как его часть гибнут). Нервная система также на протяжении всей жизни (за определенными исключениями) меняется и становится все сложнее, причем в случае этой системы можно отчетливо наблюдать точки потери устойчивости – возрастные кризисы – и дальнейшие бифуркации.

Драйвером развития живых систем является сопряжение с внешней средой, по отношению к которой система должна быть открыта с точки зрения потоков энергии и материи (в бизнесе аналогами являются интеллектуальные, социальные и финансовые ресурсы) и должна уметь распознавать определенные критические сигналы, являющиеся триггерами для изменений.

Если система избирательно реагирует на одни сигналы и не реагирует на другие, то можно говорить о том, что изменения должны «толкать» её к определенной цели – эта цель и определяет её внутреннюю логику.

Что это за цель? Что является ключевой целью развития любой живой системы?

Задумайтесь об этом на примере человеческой жизни. Перебрав множество вариантов и пройдя каждый из них до истока, Вы придете к единственному выводу: ключевой целью развития является повышение жизнеспособности – сначала собственной, затем потомства и, наконец, социума. Понятно, что цели человека могут находиться и в других плоскостях – социальной, интеллектуальной и духовной, но общим для всех людей является наличие цели повышения жизнеспособности.

Живые системы характеризуются именно тем, что в ответ на воздействия извне они меняются, становясь более жизнеспособными.

Следовательно, эффект самоорганизации в живых системах является направленным – внутренняя структура системы в определенные моменты времени перестраивается, повышая жизнеспособность. Этот феномен и есть адаптивность живых систем.

В качестве иллюстрации можно привести концепцию «антихрупкости» американского математика, трейдера и философа Нассима Талеба. Он, обращаясь к базовой способности живых систем перестраиваться и улучшаться (становиться жизнеспособнее) под воздействием внешних стрессов, вводит понятие антихрупкости – как противоположности хрупкости механических (неживых) систем, которые от воздействия стрессоров только изнашиваются и «дряхлеют».

Одним из примеров антихрупкости является механизм наращивания мышечной массы человеком: на месте разрушенных под воздействием высоких нагрузок мышечных волокон нарастают новые в количествах, превышающих разрушенные.

Другим примером антихрупкости, о котором мы уже упоминали, является укрепление иммунной системы, которая научается противостоять болезни после (за редкими исключениями) каждого перенесенного инфекционного заболевания.

Говоря о задаче построения адаптивной организации, жизнеспособность которой непрерывно нарастает в условиях постоянных внешних изменений, мы, по сути, говорим о задаче построения антихрупкой бизнес-системы.
<< 1 2 3 4 5 6 7 >>
На страницу:
4 из 7