Оценить:
 Рейтинг: 0

Familiar Talks on Science: World-Building and Life; Earth, Air and Water.

Автор
Год написания книги
2017
<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
5 из 9
Настройки чтения
Размер шрифта
Высота строк
Поля
Hot winds prevail on the plains of Kansas during the months of July and August that are phenomenal in their intensity, so much so that if they were widespread and of long continuance, like the northern blizzard, they would be attended with great loss of life and destruction to vegetation. Fortunately, they come in narrow streaks and in most cases do not blow more than from ten to thirty minutes at a time. These hot belts are sometimes not over 100 feet wide, and again they are as much as 500. They are so hot and dry that green leaves and grass are rendered as dry as powder in a few minutes. These winds are probably caused by the fact that at this season of the year, when the prevailing wind is southwesterly, the air becomes heated to a great height, and are the resulting effect of certain combinations of air currents in the higher regions of the atmosphere that force the already heated air toward the earth. As the air descends it is more and more compressed, which causes it to become more and more heated. We have already described the heating effect of compression upon air as shown by the experiment with the fire syringe. It was shown that air at normal temperature could be suddenly compressed into so small a space that the condensed heat, which was before diffused through the whole bulk of air at normal pressure, was sufficient to cause ignition. A cubic yard of air on the surface of the earth would occupy a much larger space if carried a mile above it. From this it is easy to see that if a volume of air at that height had a temperature of 70 or 80 degrees it would be very hot when condensed into a very much smaller volume, as it would be if it were forced down to the surface of the earth. These winds are the result of some superior force that is active in the upper regions of the atmosphere, because it is natural for heated air to rise, and this is what happens when the power that forced it down to the earth is no longer active to hold it there.

Reference has been made in a former chapter to tornado winds; they are rather exceptional phenomena and not thoroughly understood. The winds seem to blow in from all directions toward an area of very low pressure at a single point. The spiral motion that is common to all cyclones, in a tornado seems to be gathered up into a condensed form, like a funnel. The direction of movement is the same as that of the cyclone – that is, in the reverse direction to that of the hands of a watch. The upward motion of the air inside of the funnel is at a rate of over 170 miles an hour. The onward movement of the whole system is about thirty miles per hour.

Tornadoes occur with greater frequency in the United States than in any other section of the globe. Tornadoes seldom occur in winter, except perhaps in the Southern States. They are more frequent in the month of May than at any other time during the year, although they occur sometimes in April, June, and July.

Between 1870 and 1890 about sixty-five destructive tornadoes occurred in the United States, involving great loss of life and property. When a tornado moves off the land on to the ocean it may become what is termed a waterspout. These probably never originate on the water, but after they have once formed may be carried over the water to a considerable distance. A tornado was never known to originate on the shores of Lake Michigan, but there are a few instances (the most notable one being the Racine tornado) when they have reached the lake after having traveled from some distant point inland.

The Racine tornado – so called because it destroyed a large portion of that city – happened fifteen or more years ago. The tornado originated about 100 miles southwest of Racine, Wis., in northern Illinois. The funnel-shaped cloud passed over the lake, but the tornado character of the storm was broken up before it reached the other shore.

When a tornado passes from land to water it becomes a waterspout only when the cloud-funnel hangs low enough and the gyratory energy is sufficiently great. There is a great pressure on the water outside of the funnel and almost a perfect vacuum inside. This latter fact contributes largely to the destructive power of the tornado. When a funnel is central over a building a sudden vacuum is created outside of it and it bursts outwardly from the internal air pressure.

CHAPTER XIII

WEATHER PREDICTIONS

To predict with any great accuracy what the weather will be from day to day is a somewhat complicated problem, and, as all of us have reason to know, weather predictions made by those who have the matter in charge and are supposed to know all about it often fail to come to pass. The real trouble is that they do not know all about it. There are so many conditions existing that are outside of the range of barometers, thermometers, anemometers, and telegraphs that no one can tell just when some of these unknown factors will step in to spoil our predictions.

In very many cases, perhaps in a large majority of them, the predictions made by the weather bureau substantially come to pass. It has been stated in former chapters that the changes of weather accompany the movements of what are called cyclones and anti-cyclones, the cyclone being accompanied by low barometric pressure and the anti-cyclone by a higher one. The winds of the cyclone move spirally around the center of lowest depression with an upward trend, the motions being in a direction reversed to that of the hands of a clock. In the centers of high pressure the current is downward instead of upward and the direction of the wind around it is opposite to that around the low-pressure area. The fundamental factor in predicting the weather is the direction of movement of these areas of low pressure. In almost all cases the direction of movement is from the west to the east, but not always in a straight line. These movements, however, are classified so that after the direction has become established one can predict with considerable accuracy as to whether it will move in a curved or a straight line. By movement we do not refer to the direction of the wind at any particular point, but the onward movement of the whole cyclonic system, which is usually from twenty-five to thirty miles an hour, but in some cases the speed is much greater.

Not only does the upward movement of the whole system vary, but the velocity of the wind around any given cyclonic center varies. There are about eleven classes of cyclones that appear in the United States, each class having its own path of movement and origin. A large number of these appear to originate north of the Dakotas, and move directly east to the Gulf of St. Lawrence. Three other classes originate on about the same line, a little west, – say, north of Montana, – moving first in a southeasterly direction, passing over the center of Lake Michigan and bending northerly through Lake Ontario and finally landing in the Gulf of St. Lawrence. Two other classes start at the same point, one of them going as far south as Cincinnati, and the other as far south as Montgomery, Ala., and both turning at these points northeasterly to the Gulf of St. Lawrence. Two other classes originate in Colorado, one moving in a northeasterly direction slightly curved, and the other directly east. Still others have their origin farther south in the Gulf of Mexico, and move in a northeasterly direction. Very rarely they originate in the Atlantic east of Savannah, moving first in a northwesterly direction, but finally bending to the northeast.

Every day there is a weather map made up showing the locations of the high and low barometers, direction of wind, lines of equal pressure, as well as those of temperature. By study from year to year all of these phenomena have become systematized, so that by tracing an area of low barometer from its origin in its progress easterly it is soon seen to fall under one of these classes and we are able to predict about what its course will be. Knowing the speed of its movement as well as the velocity of wind and all the conditions attending it, taken in connection with the weather conditions in the region for which the prediction is made, an expert can ordinarily forecast with some degree of accuracy. After all that can be said, however, weather predictions based upon maps are and have been far from satisfactory. One who has been a close student of local conditions for a number of years will often predict with as great accuracy as the weather bureau. Areas of low pressure are followed sooner or later by a fall of temperature; this is especially true in the winter months. Sometimes this fall is very marked, and then it is called a cold wave. These sudden changes of temperature are not thoroughly understood, but are supposed to be due partly at least to rapid radiation of heat into the upper regions, as the clear atmosphere which usually attends areas of high pressure is favorable to such a condition. Undoubtedly, too, there are dynamic causes, forcing the colder air from the upper regions to the earth, when it immediately flows off toward an area of low barometer.

Long-time predictions are purely guesses. They sometimes guess on the right side, and this gives them courage to make another. It is an old saying that "all signs fail in dry weather." In time of a drought it is true that the indications which at ordinary times would be surely followed by a rain are of no value. When a season is once established, either as a rainy season or a dry season, it is likely to persist in this character until a change comes that is produced by the movement of the sun in its course northerly and southerly, and the change produced from this cause requires several weeks of time.

If accurate weather predictions could be made for a long time in advance, or for even a week, they would be of incalculable value. But it is doubtful if ever this will be brought about, as there are too many necessarily hidden factors which enter into the calculations. If stations could be established all over the oceans with sufficient frequency, and an equal number at a sufficient altitude in the air, I have no doubt that much that is now mysterious might be made plain.

CHAPTER XIV

HOW DEW IS FORMED

Reader, did you ever live in the country? Were you ever awakened early on a summer's morning to "go for the cows"? Did you ever wade through a wheat field in June – or the long grass of a meadow – when the pearly dewdrops hung in clusters on the bearded grain, shining like brilliants in the morning sun? Have you not seen the blades of grass studded with diamonds more beautiful than any that ever flashed in the dazzling light of a ballroom? If not, you have missed a picture that otherwise would have been hung on the walls of your memory, that no one could rob you of.

Everyone has noticed that at certain times in the year the grass becomes wet in the evening and grows more so till the sun rises the next day and dispels the moisture, and this when no cloud is seen. Dew is as old as the fields in which grass grows. It was as familiar to the ancients as it is to us, and yet it is only about three-quarters of a century since the cause of it has been understood. We even yet speak of the dew "falling" like rain. In former times some scientists supposed that it was a fine rain that fell from the higher regions of the atmosphere. Others supposed it to be an emanation from the earth, while still others supposed it was an exudation from the stars.

"By his knowledge the depths are broken up and the clouds drop down dew" (Prov. iii. 20).

The first experiments carried on in a scientific way were by Dr. Wells, a physician of London, between the years 1811 and 1814.

Everyone has noticed in warm weather the familiar phenomenon of water condensed into drops on the outside of a pitcher or tumbler containing cold water. This condensation is dew. It always forms when the conditions are right, summer and winter. In cold weather we call it frost. It has been stated in a former chapter on evaporation that the capacity of the air for holding moisture in a transparent form depends upon its temperature. If the temperature is at the freezing point it will contain the 160th part of the atmosphere's own weight as aqueous vapor. If it is 60 degrees Fahrenheit the air will retain six grains of transparent moisture to the square foot of air, while at 80 degrees it will contain nearly eleven grains. When the air is charged with this vapor to the point of saturation (which point varies with the temperature) a slight depression of the temperature is sufficient to condense this vapor into cloud or drops of water. Between 1812 and 1814 Dr. Wells made a series of experiments with flocks of cotton wool. He weighed out pieces of equal weight and attached a number of them to the upper side of a board and as many more to the lower side, and exposed it to the night air under varying conditions. One experiment was made with a board four feet from the earth, so that half of the bunches of cotton faced the ground and the other half the sky. He found upon weighing these after a night's exposure under a clear sky that the cotton wool on top of the board had gained fourteen grains in weight from the moisture, or dew, that had formed upon it, while the same amount of cotton on the under side of the board had only increased four grains. He tried further experiments by making little paper houses, or boxes, to cover a certain portion of grass or vegetation. He found that while there would be a heavy dew on the grass outside there was little or none within the inclosure. These experiments were conducted in various ways and closely watched to see that none of the phenomena were in any way connected with falling rain. It has been determined that substances like grass and green leaves of all kinds, hay and straw, while they are poor conductors of heat, are excellent radiators. In another chapter we have referred to this quality of straw, that is taken advantage of by the inhabitants of hot countries in the manufacture of ice and in our own land for storing it.

Perhaps everyone who has lived in the country has noticed that on a summer's morning when the grass is laden with dewdrops a gravel walk or a dusty road will be perfectly dry. This is due to the fact that the gravel will retain heat and not radiate it, for a much longer time than grass or green leaves. Dew begins to form upon the grass very soon after the sun is set because the moment the sun's rays are withdrawn the heat is rapidly radiated by the blades of grass, which cools the earth under it and the air above and surrounding it, so that if the air is anywhere near the moisture saturation point on cooling at the surface of the ground it will readily give up a part of its moisture, which condenses in drops upon the blades of grass.

If the night is still and clear and there is much moisture in the air, the dew will be heavy, but if the night is cloudy there will be little or no dew formed. The clouds form a screen between the earth and the upper regions of the atmosphere, which prevents the heat from radiating to a sufficient extent to form dew. For the same reason no dew will form under a light covering spread over the ground even at some distance above it. The covering acts as a screen, which prevents the heat from radiating to the dew point. From what has gone before it will be seen that if the atmosphere is not charged with moisture up to the point of saturation it will require a greater amount of depression of temperature to cause condensation, and this is why we usually have heavier dews in June when the air is more highly charged with moisture than we do in August when it is dry. This also accounts for the ice clouds, called cirrus, being formed so high up in the atmosphere during dry weather. There is so little moisture in the air that it requires a very great difference of temperature to cause condensation to take place, and the necessary depression is not reached in these cases except at an altitude of several miles.

Dr. Wells has shown that if we take the reading of two thermometers on a clear summer night, one of them lying on the grass and the other suspended two feet above it, we shall find that the one lying on the grass will read 8 or 10 degrees lower than the one suspended in the air. If the night is still there will be a cold stratum of air next to the earth, which will not tend to diffuse itself to a very great degree and dew will form. If, however, it is cloudy or the wind is blowing there is rarely any formation of dew. The reason in the former case, as we have explained, is that the radiated heat is held down to the earth in a measure, and in the latter case there is a constant change of air; so that in either case no part of it is allowed to cool down sufficiently to precipitate moisture.

It is a curious fact that often there will be a heavier dew under the blaze of a full moon on a clear night than at any other time. The moon has no screens about it of any kind to obstruct the free radiation of heat. It is supposed to be a dead cinder floating in space and not surrounded by an atmosphere, so that the sun's rays have full effect upon it during the time it is exposed to them, and at that time it becomes heated to a temperature of something like 750 degrees Fahrenheit. For half the month, say, the sun is shining continuously upon all or a part of it. In other words, the days and nights of the moon are about two weeks long. The moon does not revolve upon its own axis like the earth, therefore the same side or a portion of it is exposed to the sun for 14 days. During the time that the moon is in the earth's shadow it is supposed to fall to 187 degrees below zero, which is 219 degrees below the freezing point. When the moon is full and is heated up to over 700 degrees there is sufficient heat radiating from it to be felt sensibly upon the face of the earth, and it would be felt if it were not for the great envelope of atmosphere and its attendant cloud formations that surround the earth. There are but few days in summer when there is not a haze in the atmosphere, although we call the sky clear, which intensifies the light and gives everything a warmer tone. The heat coming from a full moon on a clear night is absorbed in causing the aqueous vapors that are partly condensed in the higher regions of the atmosphere, to be reabsorbed into transparent vapor. This clears away the heat screen in the atmosphere and allows radiation to go on more rapidly at the earth's surface, and thus cools it to a greater extent when the moon is shining brightly than when it is dark and in the shadow of the earth.

As we have already mentioned, the cold that is produced by radiation through the blades of grass and other radiating substances may be indicated by placing one thermometer on the ground and fixing another at some point in the air. Sometimes the difference is very marked, amounting to as much as 20 or 30 degrees. If under these conditions a cloud floats overhead, forming a heat screen, its presence will be readily noticed by a rise in the thermometer. Radiation into the upper regions of the atmosphere is checked, which causes a sudden rise in the temperature near the surface of the earth. By taking advantage of this principle of heat radiation from the earth's surface it is a very easy matter to protect tender vegetation from even quite a severe frost, if it occurs in the early fall, by a slight covering, such as thin paper. The paper will act as a heat screen and in a measure prevent the heat from radiating from the earth immediately under it. Frost – which of course is but frozen dew – at this season of the year will form on a still autumn night, although the atmosphere at some distance above the ground is some degrees above the freezing point. The reason for this will be obvious when we consider the facts that have been set forth concerning the power of radiation to produce cold.

It has been estimated by meteorologists that the amount of water condensed upon the surface of the earth in the form of dew amounts to as much as five inches, or about one-seventh of the whole amount of moisture that is evaporated into the air. It will thus be seen that dew performs an important part in supporting vegetation.

The same operation in nature's great workshop that forms the dews of summer creates the frosts of winter. The moisture in cold weather is condensed the same as in warm. When it is condensed at the surface of the earth we have the phenomenon of frost, but when condensed in the upper regions of the atmosphere we have that of snow.

Heat radiation from the earth goes on in winter, which is evidenced by the fact that a thick covering of snow is a great benefit to vegetation as a protection against the injurious effects of frost. The writer has seen flowers blooming abundantly at an altitude of 12,000 feet above the sea-level, protected only by the friendly shelter of a snowbank. In some cases the blooming flowers were in actual contact with the snow. By experiment it has been determined that the earth under a thick coating of snow is usually warmer by nine or ten degrees than the air immediately above the snow covering.

CHAPTER XV

HAILSTONES AND SNOW

A hailstone is a curious formation of snow and ice, and most of the large hailstones are conglomerate in their composition. They are usually composed of a center of frozen snow, packed tightly and incased in a rim of ice, and upon this rim are irregular crystalline formations jutting out in points at irregular distances. Frequently, however, we find them very symmetrically formed as to outline, and the snow centers are almost without exception round. Hailstones and hailstorms differ in different climates, but they are more pronounced in the torrid than in the temperate zone. Historians give accounts of hailstones of enormous size; the very large hailstones being undoubtedly aggregations of single stones that have been thrown together and congealed in the clouds during their fall to the earth.

It is recorded that on July 4, 1819, hailstones fell at Baconniere measuring fifteen inches in circumference, and very symmetrically formed, with beautiful outline. Hailstones in India are said to be very large – from five to twenty times larger than those in England or America – seldom less than walnuts and often as large as oranges and pumpkins. It is recorded that in 1826, during a hailstorm at Candeish, the stones perforated the roofs of houses like cannon shot, and that a single mass fell that required several days to melt, weighing over 100 pounds. It is further recorded that on May 8, 1832, a conglomerate mass of hailstones fell in Hungary a yard in length and nearly two feet in thickness. Still another instance is recorded of a hailstone having fallen in 1849 of nearly twenty feet in circumference. This hailstone is said to have fallen upon the estate of Mr. Moffat of Ord. We will only ask our readers to listen to one more hailstone story, in which it is related that during the reign of Tippoo, sultan, a hailstone fell as large as an elephant. Undoubtedly one of two things was true regarding this latter story; it was either a very large hailstone or a very small elephant. The historian fails to give the size of the elephant. There is no doubt, however, but that hailstones may adhere and form large masses owing to the violent agitation of the elements that always attends a hailstorm.

Hailstorms are almost universally attended by constant and heavy thunder and lightning, together with violent winds. They usually occur on a very hot day, and when the air is filled to saturation with moisture. When this is the case a column of air is very highly heated at some point, when it ascends with great force into the upper regions of the atmosphere to a greater altitude than is common in the case of ordinary thunderstorms. Here it meets with an intensely cold body of air, when it is suddenly condensed and readily frozen as soon as condensed, which not only forms hailstones, but sets free the energy that has been carried up in the moisture globules. This results in frequent electrical discharges, causing great waves of condensed and rarefied air, which, in the rarefied portions, produces still more intense cold; so that we have the conditions for a mighty struggle between the elements, which is intensified by a constant and terrific electric cannonade. Undoubtedly there are also whirlwinds in the cloud, similar to those that sometimes visit the earth, which would tend to gather up the hailstones and aggregate them into large masses. It is a mighty battle between the moisture-laden, superheated air, ascending from the surface of the earth, and the powers residing in the upper regions of cold. Nature is constantly struggling to find an equilibrium of her forces, and a hailstorm is only one of the little domestic flurries that take place when she is setting her house to rights. Hailstorms are usually confined to very narrow limits, and they can prevail on a grand scale only in hot climates, where we have the conditions for wide differences of temperature between the upper and lower regions of the atmosphere; and, also, where the conditions are favorable, for an enormous amount of absorption of moisture into the atmosphere.

When snow is formed in the atmosphere, the conditions are quite different from those of a hailstorm; it is usually in a lower plane of the atmosphere, and there is no violent commotion, as is the case with the latter. A volume of air laden with moisture comes in contact with a colder volume of air, when condensation takes place, as in the case of rain, except that the moisture is immediately frozen. In this case both volumes of air may be below the freezing point, but one is very much colder than the other. If the snow reaches the earth it will be because the air is below the freezing point all the way down. Snow is formed at all seasons of the year. We may have a snowstorm on a high mountain when we have extreme heat at sea-level.

In summer time of course the snow melts as soon as it falls into a stratum of air with a temperature above the freezing point, and continues its journey from that point as raindrops instead of snowflakes. In the formation of a snowflake Nature does some of her most beautiful work. A snowflake first forms with six ice spangles, radiating from a common center. Shorter ones form on these six spokes, standing at an angle of about sixty degrees, on each side of each spoke, of such length and arrangement as to form a symmetrical figure or flower. They do not always take the same form, but follow the same laws that govern the formation of ice crystals. The structure of a snowflake may be often found upon a window pane of a frosty morning. Here, however, the free arrangement of the parts of a snow crystal are interfered with by its contact with the window pane, but while floating gently in the air there is the utmost freedom for the play of nature's forces as they apply to the work of crystallization.

The difference in structure of snowflakes is chiefly due to the conditions under which they are formed. If the moisture is frozen too rapidly the molecular forces that are active in crystallization do not have time to carry out the work, in its completeness of detail, as it will where the freezing process, as well as the condensing process, goes on more slowly.

CHAPTER XVI

METEORS

Meteors are the tramps of interplanetary space. They sometimes try to steal a ride on the surface of the earth, but meet with certain destruction the moment they come within the aërial picket line of our world's defense against these wandering vagrants of the air. They have made many attempts to take this earth by storm, as it were, and many more will be made. They fire their missiles at us by the millions every year with a speed that is incredible, but thanks to the protecting influence of the great ocean of air that envelops our globe they become the victims of their own velocity.

Meteors or shooting stars are as old as the earth itself, and they are the material of which comets are made. Before it was determined what these meteors or shooting stars were, many theories were promulgated as to their origin. One was that they were masses of matter, large and small, projected by volcanic action from the face of the moon with such violence as to be brought within the attraction of the earth. Others supposed them to be the effect of certain phosphoric fluids that emanated from the earth and took fire in the upper regions of the atmosphere. This, however, was mere speculation and without any scientific basis of fact. Anyone who has been an observer of shooting stars will have learned that there are certain periods of the year when they are more numerous than at other times; notably in August and November. Then again there are longer periods of many years apart. By persistent observation it has been established that there are great numbers of schools or collections of cosmic matter that fly through interplanetary space, having definite orbits like the planets. Any one of these collections may be scattered through millions of miles in length. A comet is simply one of these wandering collections of meteoric stones having a nucleus or center where the particles are so condensed as to give it a reflecting surface something like the planets or the moon. This enables us to see the outline of the comet to the point where the fragments of matter become so scattered that they are no longer able to reflect sufficient light to reach our eyes. The fringe of a comet, however, may extend thousands or even millions of miles beyond the borders of luminosity.

There is scarcely a day or night in the year when more or less of these meteoric stones do not come within the region of our atmosphere, and when this happens the great velocity at which they travel is the means of their own destruction. They become intensely heated by friction against the atmosphere just as a bullet will when fired from a gun – only to a greater extent owing to the greater velocity. They disintegrate into dust which floats in the air for a time, when more or less of it is precipitated upon the surface of the earth. Disintegrated meteors, or star dust, as they are sometimes called, are often brought down by the rain or snow. Most of the shooting stars that we observe are very small, resembling fire-flies in the sky, but once in a while a very large one is seen moving across the face of the heavens, giving off brilliant scintillations that trail behind the meteor, making a luminous path that is visible for some seconds. These brilliant manifestations are due to one of two causes. Either there is a very large mass of incandescent matter or else they are so much nearer to us than in ordinary cases that they appear larger. It is more likely, however, that it is due to the former cause rather than the latter, from the fact of its apparently slow movement as compared with the smaller shooting stars. It has been determined by observation that the average meteor becomes visible at a point less than 100 miles above the earth's surface. It was found as far back as 1823 that out of 100 shooting stars twenty-two of them had an elevation of over twenty-four and less than forty miles; thirty-five, between forty and fifty miles; and thirteen between seventy and eighty miles. It was determined by Professor Herschel that out of sixty observations of shooting stars the average height of their first appearance was seventy-eight miles and their disappearance was at a point fifty-three miles above the earth.

It is a matter of history, however, that sometimes these meteoric stones descend to the surface of the earth before they are entirely disintegrated. A fine specimen of this kind is to be seen in the Smithsonian Institution. There are over forty specimens of these aërolites (air-stones) in the British Museum, labeled with the times and places of their fall. Instances of falling to the earth are so rare that there is little to fear from these wandering missiles of the air. We do not remember a case where life or property has suffered from the fall of a meteor.

This brings us to the consideration of the part which the great air envelope surrounding the earth plays as a protection against many outside influences. For instance, if it were not for the air, millions of these meteoric stones would be showered upon our earth every year and at certain times every day, which would render the earth untenable for human existence. We should be at the mercy of those wandering comets whose fringes strike our atmosphere more or less deeply at frequent intervals. It is not impossible that the earth may at some time pass directly through one, and yet there is little danger that in such a case there would be more than an unusual display of celestial fireworks.

From the facts that have been above stated it will be apparent to anyone that the number of these meteoric stones in the air is being constantly reduced by their constant collision with the atmosphere and consequent reduction to ashes or dust. Another conclusion is that the earth must be gradually, but imperceptibly perhaps, increasing in size on account of the constant settling upon its surface of meteoric dust.

CHAPTER XVII

THE SKY AND ITS COLOR

In the chapters on light in Vol. II. it will be stated that we see all objects by a reflected light, except those that are self-luminous, such as the sun or any other source of light. We see the moon and many of the planets entirely by reflection. There are myriads of smaller objects, too small to be seen as such, even under a microscope, that still have a power to reflect light that is sensible to our vision. The air surrounding the globe is literally filled with these microscopic light reflectors. They serve to give us a diffused light which enables us to see clearly all visible objects. We have all noticed the effect of a single electric arc light, situated at a distance from any other source of light, and how it casts extremely dark shadows and very high lights; so much so that it is difficult to see an object perfectly in this light, because the part of an object that is under the direct rays of the lamp is so highly illuminated that the shadow, by comparison, has the effect of simply a dark blot without form or shape. Many of you have noticed in a country village, where the streets are lighted with electric arc lamps, what a difference there is in the illuminating effect between a clear and a foggy night. When there is a fog, or when the clouds hang low down, we get a reflection from these which tends to diffuse and soften the powerful light rays that are sent out by these lamps. This effect is especially noticeable when the night is only moderately foggy. Each globule of moisture floating in the air becomes a reflector of light, and by myriads of reflections and counter reflections the light (which on a clear night is concentrated) is diffused over a large area, producing an illumination which for practical purposes is far superior to that produced on a clear night. When the latter condition prevails the rays of light are so intense on objects immediately surrounding the lamps that one is blinded; so that the places which are in shadow seem darker than they would be if there were no light at all. The only way to prevent this effect is to have the lights so close together that there will be cross lights, which tend to break up the intensity of the shadows. This principle of light diffusion is taken advantage of to produce an even illumination in stores that are lighted only on one or two sides. This is effected by a series of prisms or reflecting surfaces that are cast upon the panes of glass.

If now there were no atmosphere – or, to state it differently – if there were no floating substances in the atmosphere, the sun would produce an effect upon the earth similar to that of a single electric light. The lights would be extremely high, and the shadows extremely dense. To one looking off into space, the sky, instead of having the blue appearance that we see, would have the effect of looking into a deep, dark abyss without illumination.

Tyndall has shown us by a beautiful experiment that if there be in a glass tube a mixture of gases related to each other in a certain way chemically, they will combine into small globules or particles similar to moisture in the air. If now a beam of light is thrown upon this tube and a dark screen put behind it, we shall, in the beginning of the experiment, simply see the dark screen. As soon, however, as the molecules of the gases have combined in sufficient numbers to produce particles of sensible size we begin to have a reflection of light from them, the color of which is constantly changing as the combining particles grow in size. At a certain stage in its progress the color which the mixture of gases assumes is a beautiful azure blue, rivaling in purity the finest skies of Greece or southern Italy.

<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
5 из 9