Следовательно, основная часть потребляемой подстанцией энергией идет на отопление помещений, используемых персоналом, занятых электроустановками, оборудованием, инструментами и др. Таким образом, обеспечив систему отопления помещений подстанции с помощью ВИЭ можно значительно снизить расход ЭЭ на обогрев и на собственные нужды ПС в целом.
Тепловой насос – установка, предназначенная для переноса теплоты от более холодного теплоносителя, имеющего температуру, как правило, 0…40 °C, к более горячему за счет подвода внешней энергии или затраты работы. ТН используются в целях обеспечения нужд горячего водоснабжения и отопления помещений. Однако, тепловую энергию, используемую для этих целей, они не производят, а осуществляют ее перенос от низкопотенциального теплоносителя к высокопотенциальному теплоносителю, температура которого может составлять от 50 до 80 °C.
Концепция работы теплового насоса впервые была предложена в 1852 году сэром Уильямом Томсоном (более известным, как лорд Кельвин). Однако, патент на технологию использования низкопотенциальных источников энергии с целью получения тепловой энергии и дальнейшего ее использования был выдан в 1912 году известному швейцарскому исследователю Генриху Золи. А в 1927 году в Шотландии данный принцип впервые был применен на практике. Сконструированная теплонасосная установка (ТНУ) обеспечивала нужды жилого дома в отоплении и горячем водоснабжении, используя в качестве низкопотенциального источника энергии наружный воздух [3,4].
Использование ТНУ позволяет обеспечить теплоснабжение и горячее водоснабжение с минимальными затратами первичной энергии, что достигается за счет высокого значения коэффициента использования теплоты ?.
Результаты расчета годовых эксплуатационных расходов на теплоснабжение с применением различных видов отопления приведены в таблице 2 [5], при проведении расчетов было принято, что тепловая нагрузка рассчитываемого помещения составляет 180 м
, тепловая нагрузка 15 кВт, а отопительный сезон— 1700 часов в год.
Таблица 2 – Эксплуатационные затраты на теплоснабжение
Исходя из результатов расчета, приведенных в таблице 2, использование ТНУ для теплоснабжения с экономической точки зрения более целесообразно, чем применение ТЭЦ и индивидуальных газовых котельных. Это обусловлено тем, что величина годовых затрат на отопление и стоимость единицы производимой тепловой энергии, значительно меньше по сравнению с другими видами отопления.
К тому же ТН более безопасны в сравнении с индивидуальными котлами, поскольку при работе не производится сжигания топлива, а значит нет открытого огня и в воздух, не выделяются вредные смеси и газы. Узлы теплонасосной установки не нагреваются выше 90 °C, что не даст им послужить причиной возникновения пожара.
Схема работы ТН представлена на рисунке 1 [6].
Основные рабочие части ТН:
– компрессор, позволяющий создавать высокое давление;
– расширительный клапан, с помощью которого происходит переход хладагента из жидкого состояния в газообразное;
– испаритель, представляющий собой радиатор из тонких трубок, которые имеют высокую теплопроводность;
– конденсатор.
Хладагент, находящийся полностью или частично в газообразном состоянии, сжимается компрессором, что приводит к его переходу в жидкое состояние. При повышении давления он также нагревается. Далее теплоноситель попадает в конденсатор, где охлаждается и конденсируется на стенках теплообменника. Охлажденный жидкий хладагент подается в расширительный клапан, проходя через который, происходит переход его из жидкой фазы в газообразное состояние. В испарителе парообразный теплоноситель охлаждается, после чего отбирает тепловую энергию, и цикл повторяется снова.
В большинстве случаев характеристика имеющегося источника определяет его тепловые, энергетические, экономические характеристики. Основные требования к идеальному источнику тепла:
? отсутствие коррозии или загрязнений;
? отсутствие дополнительных существенных вложений и расходов по его обслуживанию;
? стабильная температура 0…40 °C, достаточная для эффективной работы ТН.
Рисунок 1 – Схема работы теплового насоса
В качестве источника тепловой энергии в системах с применением ТН используют наружный и удаляемый воздух, почву, геотермальные источники, грунтовые воды. Так же ТН могут получать тепловую энергию, утилизируя энергию сбросной низкопотенциальной теплоты промышленных предприятий, что имеет большую перспективу.
Тепловые насосы более безопасны и экономичны, чем котлы на газовом или твердом топливе, поэтому широко используются в системах централизованного и индивидуального отопления и горячего водоснабжения по всему миру.
Выделяют несколько различных видов систем отопления подстанций с использованием тепловых насосов [7]:
– с подачей нагретого масла в систему отопления;
– с нагревом воды в масло-водяном теплообменнике;
– с нагревом воды с помощью теплового насоса;
– с нагревом воздуха в масло-воздушном теплообменнике;
– с непосредственным отводом нагретого воздуха от охлаждающих радиаторов;
– с нагревом воздуха в водо-воздушном теплообменнике.
Применение одной из вышеперечисленных систем отопления должно производиться в зависимости от типа, мощности, установленных на ПС силовых трансформаторов, удаленности отапливаемых помещений, а также вида теплоносителя, который планируется использовать в отопительном контуре.
На данный момент времени все чаще на подстанциях применяется схема нагрева воды с использованием теплового насоса, что обусловлено рядом преимуществ этой системы:
– не требуется реконструкции имеющейся на подстанции системы отопления. При установок на ПС системы отопления с применением теплового насоса, сохраняется возможность использования уже установленных в помещениях радиаторов водяного отопления.
– немаловажным преимуществом является тот факт, что данная система, в отличие от других систем отопления, позволяет передавать тепловую энергию потребителям, которые могут находиться на расстоянии до 1 км от подстанции.
Принцип работы данной системы следующий. Попадая в теплообменник, нагретое в процессе работы трансформатора масло передает свое тепло воде, циркулирующей в промежуточном контуре между теплообменником «масло-вода» и ТН. После чего данная тепловая энергия в испарителе поглощается фреоновым контуром теплового насоса. Далее фреон, находящийся полностью или частично в газообразном состоянии, сжимается компрессором, что приводит к его переходу в жидкость. Естественно, при повышении давления и переходе фреона из газообразного состояния в жидкое он нагревается. После чего теплоноситель попадает в конденсатор, где происходит нагрев воды, которая используется непосредственно для отопления эксплуатируемых персоналом помещений, а так же для обеспечения горячего водоснабжения.
Из вышесказанного можно сделать вывод, что схема отопления помещений подстанции с применением теплового насоса позволит значительно снизить затраты ее на собственные нужды, а также позволит в купе с другими мероприятиями позволит решить проблему снижения суммарных потерь в энергосистемах и повышения эффективности их работы.
Список использованных источников:
1. Новости энергетики / Есть ли будущее у ветроэнергетики в России [Электронный ресурс]. Режим доступа: http://novostienergetiki.ru/est-li-budushhee-u-vetroenergetiki-v-rossii/ – Заглавие с экрана.
2. Энергетическая стратегия России на период до 2035 года [Электронный ресурс]. Режим доступа: http://ac.gov.ru/files/content/1578/11-02-14-energostrategy-2035-pdf.pdf – Заглавие с экрана.
3. T-nasos/ История тепловых насосов [Электронный ресурс]. Режим доступа: http://osipovs.ru/index.php/istory-tn— Заглавие с экрана.
4. Морозюк, Т. В. Теория холодильных машин и тепловых насосов: учеб. пособие / Т. В. Морозюк. – Одесса: Студия «Негоциант», 2006. – 712 с.
5. Калнинь, И. М. Энергосберегающие, экологически чистые технологии теплоснабжения производственных и жилых помещений / И. М. Калнинь, Л. Я. Лазарев, А. И. Савицкий.
6. Трубаев, П. А. Тепловые насосы: учеб. пособие / П. А. Трубаев, Б. М. Гришко. – Белгород: Изд-во БГТУ им. В. Г. Шухова, 2009. – 142 с.
7. Елистратов, В. В. Теоретические основы нетрадиционной и возобновляемой энергетики: учебное пособие / В. В. Елистратов, М. В. Кузнецов. – Ч. 1: Определение ветроэнергетических ресурсов региона. – Санкт-Петербург: Изд-во СПбГПУ, 2004. – 59 с.
Разработка системы заблаговременного обнаружения токов короткого замыкания
Брындин А. И. – студент группы 8Э-61, Гизбрехт О. П. – студент группы Э-31, Белицын И. В. – к.п.н., доцент РФ, Алтайский край, г. Барнаул, ФГБОУ ВО «Алтайский государственный технический университет им. И. И. Ползунова»
Первые эксперименты человека с электричеством и созданием цепей для прохождения тока сопровождались короткими замыканиями и неисправностями, во время которых приобретался опыт и знания, выявлялись закономерности протекающих процессов и вырабатывались правила эксплуатации. На основе анализа допущенных ошибок начали создаваться устройства, предохраняющие оборудование и людей от электрического воздействия. Первыми такими приборами стали плавкие предохранители, которые перегорали при создании критических нагрузок, разрывая цепи электрического тока.
Более сложные защитные конструкции начали массово внедряться после 1891 года, когда в России по проекту Михаила Осиповича Доливо-Добровольского успешно транспортировали 220 кВт электрической энергии на 175 км с КПД в 77 % на основе трехфазной системы напряжения, разработанной этим же ученым.
В основу работы защит был положен принцип реле – устройств, которые постоянно отслеживают какой-либо электрический параметр сети, а при достижении им критических величин срабатывают: резко меняют свое первоначальное состояние, коммутируя электрическую схему.
Первые устройства защит выполнялись на основе электромеханических конструкций реле, а специалистов, занимающихся их эксплуатацией, стали называть термином «релейщики», который действует до настоящего времени.