Оценить:
 Рейтинг: 0

Как рождаются открытия?

Год написания книги
2012
<< 1 2 3 >>
На страницу:
2 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля

Что думают ученые о природе научного творчества, о том, как рождаются новые идеи, теоремы, законы? И думают ли они об этом?

Категорично, пожалуй, ответить нельзя, потому что иногда ученые, сделав открытие, не могли его по-настоящему оценить сами. Известно, например, что Шрёдингер по предложению Петера Дебая (1884–1966) неохотно согласился выступить на семинаре аспирантов Цюрихского университета о научных взглядах Луи де Бройля (1875–1960). Однако, прежде чем выступить, исследователь облачил взгляды де Броля в логическую последовательность математических формул, придал им математическую обработку. В результате возникло уравнение Шрёдингера, которое лежит в основе волновой механики. По утверждению академика П. Л. Капицы, «дебай говорил, что, выступая на семинаре, Шрёдингер сам не понимал, какое большое открытие он сделал».

Интересную историю однажды рассказал Эрнесту Резерфорду (1871–1937) Макс Планк. Когда он впервые выдвинул свою квантовую теорию света, люди не очень охотно ей доверяли, отчасти потому, что, согласно этой теории, заряд электрона должен быть равен 4,7???10

, тогда как общепризнанной величиной считалась 3,4???10

. У самого Планка вызывало сомнение это противоречие, но когда Ханс Гейгер (1882–1945) и Резерфорд обнародовали величину 4,65???10

, Планк уверовал в справедливость своей теории.

Все же некоторые видные ученые не только задумывались над этой проблемой, но и сами старались объяснить процесс творчества.

Известный французский математик Жюль Анри Пуанкаре (1854–1912) в психологическом этюде о математическом творчестве рассказывает, как пришло к нему решение сложной математической проблемы: «В продолжении двух недель я старался доказать, что не существует никаких других функций, аналогичных тем, которые я назвал впоследствии фуксовыми функциями; я был тогда очень невежествен: каждый день я садился к рабочему столу и проводил за ним час или два; я перебирал огромное количество комбинаций и не приходил ни к какому результату. Однажды вечером я выпил черного кофе вопреки обыкновению и не мог заснуть; идеи толпой возникали в мозгу; я ощущал как бы их столкновения до тех пор, пока две из них не сцепились, так сказать, между собой, чтобы образовать стойкую комбинацию. Утром я установил существование одного класса фуксовых функций, происходящих из гипергеометрического ряда; мне оставалось только редактировать выводы, что отняло у меня всего несколько часов».

Однако на этом не была поставлена точка. У Пуанкаре появилась новая идея, но из этого ничего не получилось. Тогда ученый забросил свои математические головоломки и уехал путешествовать, стараясь не вспоминать больше о математике. «После этого, – продолжал А. Пуанкаре, – я принялся за изучение некоторых арифметических вопросов, не приходя к особенно значительному результату и на подозревая, что эти вопросы могут иметь хоть малейшее отношение к моим предыдущим исследованиям. Обескураженный неуспехом, я отправился на несколько дней на берег моря; голова моя была занята при этом совсем другими вещами. Однажды, когда я гулял по скалистому берегу, у меня явилась, как всегда, внезапная и отрывочная идея, справедливость которой была для меня непосредственно ясна». Но это еще не было окончательное решение. Великий ученый стал лишь лучше понимать трудности задачи. Решение пришло тоже неожиданно – во время прогулки по бульвару. «Передо мною, – отмечал Пуанкаре, – вдруг предстало разрешение затруднения, которое раньше остановило меня».

Не трудно заметить, что ученый продвигался к конечному результату постепенно, на основе больших знаний, большого теоретического напряжения, больших духовных затрат. Решив одну группу задач, он сделал перерыв, осмысливая пройденное, а затем принимался за другую группу задач. Понятно что, не работая так напряженно и много в одном и том же направлении, вряд ли исследователь приснил бы счастливые идеи. И другое, что, несомненно, существенно. Автору приснились те идеи, которые непосредственно относились к исследуемой им в данный период времени проблеме, а не другие и не о другом. Следовательно, это еще одно подтверждение того, что просто так, сами по себе идеи не возникают. И просто так, без приложения усилий и обладания знаниями, озарение не приходит к ученому.

Подтверждением этой мысли являются и размышления Героя Социалистического Труда, лауреата Государственной премии, академика С. Л. Соболева о зарождении идей. Новая идея возникает тогда, – говорил он, – и только тогда, когда человек, отключившись на некоторое время решительно от всех мыслей, думает только об одном – вживается в эту проблему и начинается мучительное, не совсем приятное состояние, когда есть только стремление разобраться в том, что тебя захватило.

Когда ученый вживается в образ, в те модели, которые создает, он начинает усматривать внутренние закономерности, которые были неясны. Вначале они туманны, потом становятся яснее, и вдруг идея начинает вырисовывается, приобретать ясность и четкие контуры.

Научное творчество – сложный и трудный процесс поиска истины, это бесконечный процесс интуитивных догадок, размышлений. Известно, например, что Герман Людвиг Фердинанд Гельмгольц (1821–1894) жаловался, когда спасительные мысли не приходили к нему. Он целыми днями, месяцами в буквальном смысле слова мучился над трудными процессами. Решение приходило самым неожиданным образом – на прогулке, и, как правило, утром. «Но та гордость, какую мог внушать мне в этих случаях конечный результат, – говорил он, – значительно принижалась от сознания, что решение подобных задач почти всегда давалось мне не иначе, как путем постепенного обобщения удобных частных случаев, рядом счастливых проблесков блуждания по сторонам. Я могу сравнить себя с путником, который предпринял восхождение в гору, не зная дороги; долго и с трудом забирается он и часто вынужден возвращаться назад, ибо дальше нет прохода; то размышление, то случай открывает ему новые тропинки, они ведут несколько далее, и, наконец, когда цель уже достигнута, он, к стыду своему, находит широкую дорогу, по которой мог бы подняться, если бы сумел верно отыскать начало», – писал Г. Гельмгольц, описывая процесс своего творчества.

Характерно, что в обоих случаях, приведенных здесь из рассказов самих ученых, новые идеи явились после того, как напряженная работа сменялась отдыхом. В этом, наверное, одна из причин разгадки процесса научного творчества. Но на этот вопрос, пожалуй, лучше смогут ответить специалисты: физиологи и психологи. Отметим только, что ученому важно всегда уметь распределить свои силы, найти время и для активного отдыха.

Из истории науки известны и другие примеры рождения открытий, на которые влияли также иные факторы. Хорошей иллюстрацией является появление неэвклидовой геометрии. Молодой Николай Иванович Лобачевский (1792–1856) долгое время работал в школе для взрослых и каждый раз не был удовлетворен объяснением ученикам очевидности постулата о непересекаемости параллельных линий. Молодой ученый серьезно задумался над этой проблемой. Где же выход? Целеустремленность, настойчивость, обширные и глубокие знания, умение по-новому посмотреть на старое и привели к рождению неэвклидовой геометрии.

Может это единичный пример? Жизнь и деятельность многих всемирно известных ученых не позволяет сделать такое заключение. Дмитрий Иванович Менделеев (1834–1907) читал лекции по основам химии и одновременно работал над монографией. Работа продвигалась очень медленно: ученый не мог так описать свойства химических элементов, чтобы их легко могли запомнить студенты. Проходили дни, недели, но положение от этого не изменилось: написание монографии не продвигалось. И вдруг Дмитрий Иванович получил письмо – он срочно должен был уехать из Петербурга в деревню. Ученый заторопился и неожиданно для себя обнаружил ряд ценных мыслей, которые тут же, на обороте только что полученного письма, записал. Он понял, что главное в решающей проблеме – сближение групп химических элементов по величине атомного веса. Он остался. Начал усиленно работать. От чрезмерного напряжения (трое суток не спал) ученый заснул и, что удивительно, во сне увидел, – как потом вспоминал, – таблицу, где элементы были расставлены так, как требуется. В две недели обоснование открытия было закончено. Так родилась знаменитая таблица Менделеева – периодическая система химических элементов.

Характерно, что и Шрёдингер нашел свои знаменитые уравнения квантовой механики в процессе объяснения работы Луи де Бойля группе аспирантов Цюрихского университета, а теорема Отокса появилась, когда математик предложил студентам в одной из задач доказать, что интеграл, взятый по контуру, связан с величиной потока, проходящего через этот контур.

Свое гениальное открытие Лев Николаевич Гумилев, сын изветных поэтов Анны Андревны Ахматовой и Николая Степановича Гумилева, сделал в тюрьме, в «крестах». Именно там у него возникла мысль о мотивации человеческих поступков в истории, которая и вывела его на концепцию этногенеза. Почему, например, Александр Македонский шел в Индию и Среднюю Азию, хотя понимал, что там удержаться не мог. И Гумилеву вдруг пришло в голову, что его что-то толкало, что-то такое, что было внутри него. И Лев Николаевич назвал это пассионарностью. Он писал: «Каждый этнос развивается как любая система: через фазу подъема к акматической фазе, т. е. фазе наибольшего энергетического накала, затем идет довольно резкий спад, который выходит плавно на прямую – инерционную фазу развития, и как таковой он затем постепенно затухает, сменяясь другими этносами. К социальным соотношениям, например к формациям, это не имеет прямого отношения, а является как бы фоном, на котором развивается социальная жизнь.

Эта энергия живого вещества биосферы всем известна, все ее видят, хотя отметил ее значение я первый, и сделал я это размышляя в тюремных условиях над проблемами истории. Я обнаружил, что у некоторых людей в большей или меньшей степени существует тяга к жертвенности, тяга к верности своим идеалам (под идеалом я понимаю далекий прогноз). Эти люди в большей или меньшей степени стремятся к осуществлению того, что для них является наиболее дорогим, чем личное счастье и личная жизнь. Этих людей я назвал пассионариями, а качество это я назвал пассионарностью.

Это не теория «героя и толпы». Дело в том, что эти пассионарии находятся во всех слоях того или иного этнического или общественного коллектива, но количество их плавно снижается со временем. Но цели у них иногда бывают единые – правильные, подсказанные нужной в данном случае доминантой поведения, а в ином случае – противоречат им. Поскольку это энергия, то она от этого не меняется, она просто показывает степень их (пассионарности) активности.

Эта концепция позволила мне определить, почему возникают подъемы и спады народов: подъемы, когда количество таких людей увеличивается, спады – когда оно уменьшается. Есть посредине оптимальный уровень, когда этих пассионариев столько, сколько нужно для выполнения общих задач государства, или нации, или класса, а остальные работают и соучаствуют в движении вместе с ними».

Интересны наблюдения и всемирно известного исследователя, основателя геохимии, биогеохимии, радиогеологии Владимира Ивановича Вернадского (1863–1945). Он отмечал: «Взрывы научного творчества, повторяющиеся через столетия, указывают… на то, что… повторяются периоды, когда скопляются в одном или нескольких поколениях, в одной или многих странах богато одаренные личности, те, умы которых создают силу, меняющую биосферу. Их нарождение есть реальный факт, теснейшим образом связанный со структурой человека, выраженной в аспекте природного явления».

Откуда же взялся первоначальный толчок?

В. И. Вернадский в 1908 г. читал заметку во французской газете о перелете саранчи из Африки в Аравию и обратил внимание на то, что масса скопища насекомых была больше, чем запасы всех месторождений меди, цинка и олова на всей Земле. Он был гений и потому задумался о том, какова энергия, которая подняла этих насекомых и бросила их из цветущих долин Эфиопии в Аравийскую пустыню на верную смерть. Следовательно, биогеохимическая энергия живого вещества биосферы – не мистическая, а обыкновенная, аналогичная электромагнитной, механической, тепловой, гравитационной. Большей частью она находится в гомеостазе – неустойчивом равновесии, но иногда наблюдаются флуктуации – резкие подъемы и спады. Таким толчком, по Гумилеву, является космическое облучение.

О чем говорят факты и примеры?

Так ли уж случайно происходили открытия, как это на первый взгляд некоторым кажется? Анализ показывает, что поводом к многим из них служило желание как можно яснее, но в то же время аргументированно донести до студентов, слушателей знания по той или иной проблеме. Когда это не получалось, ученые сосредотачивали на «белых пятнах» незнания все свои знания, энергию, силы и опыт, морально настраивали себя на то, чтобы преодолеть этот барьер незнания. В других случаях толчком к открытию явились подсказки природы, в третьих – критическое состояние ученого, когда необходимо мгновенно на что-то конкретное решиться и т. д. Альберт Эйнштейн (1879–1955) со свойственным ему юмором однажды на вопрос как рождаются научные открытия ответил: очень просто, все люди знают, что этого сделать нельзя, приходит не очень сведущий человек, который еще не знает, что нельзя, начинает пробовать и у него получается. Понятно, это шутка. А если серьезно, то за такими «случайностями» скрыты, как правило, многочисленные годы совсем не случайного труда. Научное открытие – логическое следствие напряженной, порой изнурительной работы.

Никто не делает внезапных открытий. Наука продвигается вперед шаг за шагом, и труд любого человека зависит от труда его предшественников. И если кто-либо говорит о внезапном, неожиданном открытии, можно быть уверенным, что оно созрело в результате влияния одних людей на других, и именно это взаимное влияние открывает необычные возможности прогресса науки.

Анализ примеров говорит и о том, что большие открытия были сделаны при объяснении тех или иных положений научной мысли слушателям. В связи с этим представляется необходимым научным сотрудникам научно-исследовательских отраслевых и академических институтов иметь возможность читать определенный курс лекций студентам, аспирантам, а иногда и даже школьникам. При этом, как правило, возникают как у слушателей, так и у преподавателей многочисленные вопросы, многочисленные проблемы, которые раньше и не могли появиться. А ведь они могут дать и дают толчок, повод, импульс к рождению новых открытий.

История науки показывает, что никогда не следует проходить мимо неожиданных и непонятных явлений, с которыми невзначай встречаешься в эксперименте. Самое важное в эксперименте – это вовсе не то, что подтверждает уже существующую, пусть даже вашу собственную теорию (хотя это тоже, конечно, нужно). Самое важное то, что ей ярко противоречит.

Поэтому очень важно обращать внимание на непонятные явления, не отмахиваться от них, думая, что это случайность, всякий раз надо тщательно, экспериментально обследовать эти непонятные явления. В большинстве случаев они действительно окажутся ошибкой опыта, либо объяснятся просто. Но изредка они дадут начало крупному новому открытию, которое вызовет существенно новый шаг вперед в науке.

Закономерен вопрос: а может ли каждый сделать научное открытие? В принципе, каждый из нас со дня рождения, пожалуй, с каждым годом делает для себя все больше и больше новых открытий. Но великие из них, сделанные не для себя, а прежде всего для общества, появляются очень редко и очень мало. И чем значительнее они, тем меньше их, иначе, как метко заметил академик П. Л. Капица, они не были бы такими великими. Петр Леонидович уверен, что в большой науке значительных успехов могут достичь только глубоко одаренные, творчески относящиеся к работе люди. Таких людей в науке немного. Их не может быть много: ведь, крупных, всемирно известных писателей, композиторов, художников, актеров в стране также мало. Иначе и быте не может: если их будет много, то они не будут выдающимися. Но великим личностям науки необходимо создать такие условия, при которых максимально использовались бы их знания, силы, опыт.

Черты характера ученого

Трудно предписать заранее, практически это даже невозможно сделать, каким должен быть ученый, какие черты характера он должен иметь, чтобы оставить заметный след в науке. История науки на этот счет имеет самые разнообразные примеры. Тем не менее, имеются некоторые черты более или менее общие для всех. Это прежде всего трудолюбие, увлеченность, любознательность, самокритичность, простота и ясность мышления, сильная интуиция, доброжелательность к людям, щедрая отдача знаний и личное обаяние. О некоторых из них пойдет речь подробнее.

Порой у части молодежи, особенно школьников, незнающих специфики научного труда, создается ложное представление о его легкости. Возможно, так получается потому, что мы всегда видим, читаем, слышим о результатах деятельности ученых, а сам процесс творчества уходит на второй план. Нередко о нем вообще не знают. В этом часто виновны сами ученые, недостаточно освещающие свой творческий поиск. Итог работы заслоняет собой бессонные ночи, анализ тысяч мыслей, сомнения, многочисленные неудачи, после которых порой хочется все бросить и не заниматься больше исследуемой проблемой. Но чем труднее она решалась, тем ценнее она для ученого.

Карл Маркс писал, что широкой столбовой дороги в науке нет и добраться до сияющих вершин сможет только тот, кто, не страшась усталости, карабкается по каменистым тропам. Поэтому трудолюбие должно быть одной из характерных черт каждого ученого. В своем потенциале человек может быть даже талантливым, гениальным, но если он не будет работать над собою, то ничего из этого не получится. Не случайно, что иногда менее способный, но более трудолюбивый человек достигает в науке большего, чем способный, но неорганизованный. Идеи сами по себе не приходят – они рождаются в муках и радостях, в постоянном и целенаправленном труде. Альберту Эйнштейну часто задавали вопрос, сколько часов он работает, и он всегда затруднялся ответить, потому что для него работать значило думать. Иногда же он сам спрашивал кого-нибудь из знакомых: «Сколько часов в день Вы работаете?». И когда получал ответ – восемь или десять, пожимал плечами и говорил: «Я не могу так долго работать. Я не могу работать больше четырех-пяти часов в день, я не трудолюбивый человек».

В действительности А. Эйнштейн отдавался творческой работе полностью, всецело, что давало ему большое удовлетворение и делало творческий труд более эффективным.

Ученый никогда не останавливается в своем устремлении к познанию истины. Таким был Николай Иванович Вавилов (1887–1943). Его работоспособность являлась поистине потрясающей. Закрываясь плащом от проливного дождя, он с раннего утра долго ездил по опытным участкам. И не раз его сотрудники задумывались над вопросами: что заставляет Николая Ивановича, академика, ученого с мировым именем, вставать на рассвете и на тачанке колесить по размокшей степи для того, чтобы посмотреть лесные посадки? Разве многие агрономы интересуются этим? Как может один человек постигнуть большие вопросы происхождения, географии и систематики культурных растений, сложнейшие спорные проблемы генетики и сверх всего – глубоко вникать в дело интродукции древесных пород в степи?

По свидетельству всех, кто близко знал Вавилова, он спал в сутки не более четырех-пяти часов, и это его вполне удовлетворяло. Казалось, природа наделила организм ученого какими-то особыми физическими качествами, специально приспособленными к той гигантской работе, для которой он был предназначен. В институте растениеводства ему приносили вечером поступившую за сутки литературу, и он успевал посмотреть или прочесть ее всю за ночь. В путешествии он удовлетворялся короткими отрезками времени для сна, успевая выспаться при переездах в автомашине и доводя своих спутников до переутомления.

Директор института хлопководства во Флориде, профессор Харланд, по воспоминаниям академика ВАСХНИЛ Н. А. Майсуряна, по приезде в СССР рассказывал, что после посещения Вавиловым их института сотрудникам пришлось дать трехдневный отдых.

Настоящую свою работу Николай Иванович начинал после конца рабочего дня. Прошедшие часы его не утомляли, и, полный энергии, он усаживался в кресло, склоняясь над рукописью, книгой или картой. Пустел институт, уходили посетители, а он, увлеченный работой, сидел допоздна, когда всецело можно обратиться к науке и перестать чувствовать себя директором и руководителем двух крупнейших научных институтов – Всесоюзного института растениеводства, Института генетики АН СССР, президентом ВАСХНИЛ.

Он был неукротим, не умел отдыхать или «ничего не делать». Ехал ли он поездом, плыл ли на пароходе, летел ли на самолете, он всегда, едва заняв свое место, доставал книги, бумаги и начинал работу, не обращая никакого внимания на окружающих. Кратким отдыхом была для него беседа со спутником.

Характерно, что сам Николай Иванович никогда не жаловался на утомление или усталость, хотя никогда не пользовался отпуском. Темпы его жизни и особенно темпы его научной работы в состоянии были выдержать только те, кто был подлинно предан науке.

Известный русский физиолог Иван Петрович Павлов (1849–1936) любил и уважал труд. И не случайно, что первый вопрос новому сотруднику, желавшему попасть в его лабораторию, выяснял работоспособность человека, его желание работать: «Сколько времени можете работать? Что может отвлечь? Семья? Жилищные трудности?» Главное для него – дело. И делу науки он посвятил всего себя без остатка. Так старался подходить Иван Петрович и к другим.

Настоящий ученый просто не мыслит себя без труда. Великий математик Христиан Гюйгенс, по запискам его современников, в свободное время занимался не математикой, а физикой. То, что для других было утомительным занятием, для него было развлечением, так как без работы полезного занятия он для себя не знал.

Леонард Эйлер обладал удивительной работоспособностью и колоссальной памятью на числа – помнил шесть первых степеней всех чисел до ста. Однажды за трое суток Эйлер произвел столько вычислений, что другим академикам пришлось бы трудиться несколько месяцев! Правда, от нечеловеческого напряжения на четвертые сутки Эйлер ослеп на один глаз, а к шестидесяти годам совсем утратил зрение. И еще целых пятнадцать лет, погруженный в вечный мрак, он диктовал свои математические выкладки сыну Ивану, академикам Николаю Ивановичу Фуссу (1735–1825), Степану Яковлевичу Румовскому (1734–1812), Михаилу Евсеевичу Головину (1756–1790).

До чего был талантлив один из родоначальников ядерной физики, датский ученый, Лауреат Нобелевской премии Нильс Бор, тем не менее он очень придирчиво, скрупулезно относился к каждой фразе. Исследователь стремился, «чтобы каждая фраза звучала именно так, как того желал Бор, – все это характерно для него», – писала Рут Мур о Нильсе Боре. Ни одна его статья не увидела света без такой же упорной работы. Он очень хотел, чтобы каждое его слово было точным – как для сегодняшнего дня, так и для будущего. И это было уже не только трудолюбием, но и большой культурой в работе.

Вступающим в науку необходимо запомнить, что труд ученого требует максимального напряжения и сосредоточения всех умственных и физических сил, постоянной и упорной работы над собою. Труд ученого не легче труда сталевара или шахтера. Он также необходим для общества, как труд хлебороба или рабочего. Поэтому ученому нужно непрерывно, систематически трудиться над совершенствованием методов своей работы.

Однако одного трудолюбия мало. Необходимо быть любознательным. «Без любознательности, – писал Л. Ландау, – нормальное развитие человека, по-моему, немыслимо. Отсутствие этого драгоценного качества зримо при всяком столкновении с куцым интеллектом, со скучным старичком любого возраста». Не утратить великий дар детства – способность удивляться – очень долго – это тоже великое благо человека. К сожалению, не каждый им располагает. Тем более мы должны развивать эти качества уже со школьной скамьи.

Любознательность всегда граничит с увлеченностью. Ученый это и увлеченный человек, беспредельно преданный науке, энтузиаст своего дела. В связи с этим он всегда и везде поглощен своей работой, влюблен в нее. Трудно сказать, что, работая увлеченно, он отдыхает и что отдыхая – работает. Он всегда на боевом посту науки, если его что-то сильно не отвлекает.

Подтверждением этого является один из примеров жизни и деятельности И. В. Курчатова. По воспоминаниям Абрама Федоровича Иоффе (1880–1960), «Игорь Васильевич был беспредельно предан науке и жил ею. Почти систематически приходилось в полночь удалять его из лаборатории. Каждому молодому физику представлялась заманчивой посылка его в лучшие заграничные лаборатории, где можно познакомиться с новыми людьми, новыми методами научной работы. Двадцать научных сотрудников физико-технического института удалось направить за границу на сроки от полугода до двух лет. В течении нескольких лет такая возможность была и у Игоря Васильевича. Но он все откладывал ее осуществление: каждый раз, когда надо было выезжать, у него шел интересный эксперимент, который он предпочитал поездке».
<< 1 2 3 >>
На страницу:
2 из 3