Оценить:
 Рейтинг: 0

Все науки. №4, 2023. Международный научный журнал

<< 1 2 3 4 5 6 >>
На страницу:
4 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

Усмонов Якуб

доцент кафедры «Профессиональное образование» Ферганского Государственного Университета

Ахмедов Турсун Ахмедович

доцент кафедры «Профессиональное образование» Ферганского Государственного Университета

Каримов Баходир Хошимович

доцент кафедры «Профессиональное образование» Ферганского Государственного Университета

Ферганский государственный университет, Фергана, Узбекистан

Аннотация. Эффект Зеебека (термо-ЭДС) используется для преобразования тепловой энергии в электрическую. Перенос тепла электрическим током (эффект Пельтье) лежит в основе действия твердотельных охлаждающих и термостатирующих устройств. Термоэлектрические преобразователи энергии обладают уникальными сочетаниями конструктивных и эксплуатационных характеристик, таких, как отсутствие движущихся деталей, рабочих жидкостей и газов, высокая надёжность, возможность эксплуатации в течение нескольких лет без обслуживания или при минимальном периодическом обслуживании и др.

Ключевые слова: термогенератор, термоэлементы, эффект Пельтье, термоэлектрические материалы, плёночный термогенератор, термо-ЭДС, применение плёночного термогенератора.

Annotation. The Seebeck effect (thermo-EMF) is used to convert thermal energy into electrical energy. The transfer of heat by electric current (Peltier effect) underlies the action of solid-state cooling and thermostatic devices. Thermoelectric energy converters have unique combinations of design and operational characteristics, such as the absence of moving parts, working fluids and gases, high reliability, the ability to operate for several years without maintenance or with minimal periodic maintenance, etc.

Keywords: thermogenerator, thermoelements, Peltier effect, thermoelectric materials, film thermogenerator, thermo-EMF, application of film thermogenerator.

Эти достоинства определяют многообразие использования термогенераторов в качестве источников электропитания, главным образом для автономных систем – в космосе, в труднодоступных районах суши и моря и, т. п. Термоэлектрические холодильники и термостаты применяются в приборостроении, ИК-технике, медицине, биологии, бытовой технике. Широк также спектр применения термоэлектрических приборов в измерительной технике, термометрии, пирометрии, электроизмерениях и. т. д.

Многие задачи, которые практика ставит перед разработчиками термоэлектрических устройств, могут быть успешно решены с применением плёночных термогенераторов (ПТГ). Очевидное достоинство ПТГ – возможность принципиально увеличить число элементов при сохранении объема преобразователя, а при необходимости создавать микроминиатюрные устройства. На основе ПТГ могут быть изготовлены малогабаритные источники питания, слаботочные микрохолодильники и термостаты, высокочувствительные и достаточно малоинерционные датчики температуры и теплового потока и т. п. Вакуумная технология существенно упрощает процесс сборки и сокращая длительность изготовления термогенераторов, позволяет сочетать в единой конструкции и изготавливать в едином технологическом цикле элементы и схемы радио – и оптоэлектроники с термоэлектрическими устройствами.

Результаты физических и технологических исследований, конструкторских разработок были достигнуты значительные успехи в области плёночных термоэлектрических преобразователей.

К настоящему времени доказано принципиальная возможность создания ПТГ с энергетическими характеристиками, близкими к объёмных, разработка технология массового их изготовления, создан ряд прибором на их основе. Новые термоэлектрические датчики температуры и лучистого потока обладают на порядок более высокой чувствительностью.

Успехи, достигнутые в создании высокоэффективных ПТГ, несомненно приведут к широкому их техническому применению, что в свою очередь потребует дальнейшего развития физических и технологических исследований, расширения фронта конструкторских разработок. В связи этим является актуальным разработать технологию получения ПТГ и новых конструкторских разработок, также исследовать электро и теплофизические свойств.

Рабочим веществом в современных термоэлектрических преобразователях служат полупроводники, выбор и оптимизация свойств которых базируются на теории, развитой академиком А.Ф.Иоффе. Качество материала характеризуется термоэлектрической эффективностью z = ?

?/?, где ? – коэффициент термо-ЭДС, ? и ? их – удельные электро и теплопроводности. Чем выше значение безразмерного параметра zT (T- рабочая температура), тем больше КПД термогенератора.

Технология получения плёночного термогенератора основана на термическом испарении полупроводниковых материалов в вакууме или в атмосфере различных газов.

Технологический режим получения плёночного термогенератора зависит от большого числа параметров, таких как температура испарителя и подложки, толщина плёнки, состав и давление остаточных газов в вакуумной камере, условия термической и химической обработки плёнок после напыления. При этом каждому полупроводниковому материалу соответствует свой оптимальный режим и часто небольшие отклонения от него даже по одному из параметров приводят к исчезновению термоэффекта в изготовляемых плёнках. По этому разработка технология получения плёночного термогенератора из того или иного материала требует проведения большой экспериментальной работы, большого количества пробных напыления при последовательном варьировании нескольких технологических параметров, их сочетаний и нахождения параметров, специфичных для получения тармоэффекта на плёнках из данного полупроводникового материала.

Нами разработана технология получения термогенератора с материалов Bi-Sb.

Плёночные термогенераторы получались напылением полупроводникового материала из тигеля в вакууме ~10

мм рт. ст. на различные подложки (алюминий, мед, латунь железо, слюда, сапфир и керамика) нагретые от 20—250°С и расположенные под углом 90° по направлению молекулярного пучка.

Разработан оптимальный режим и подобрана подложка для плёночного термогенератора на основе Bi-Sb.

Полученные термогенераторы генерирует 60 мА и 50 мВ при температуре 200—250

 С.

Расширяется фронт конструкторских разработок и исследуется электро и теплофизические свойства полученных термогенераторов на основе Bi-Sb.

Литература

1. Лайнер Д. И. и др. Термоэлектрические свойства полупроводников. – М: АНСССР, 1963.

2. Берченко М.А и др. Электронная обработка материалов. – Кишинев,1975.

3. Набиев МБ., Усмонов Я., Атакулов Ш. Б., Онаркулов К. Э. Легирующая добавка для термоэлектрического материала п – типа тройного сплава В1

Те

– В1



. – Вестник ФерГУ, 2012, вып. №2.

4. ЮлдашалиевД. К, Усмонов. Я, Ахмедов, Б.Х.Каримов. Получение и исследование термоэлектрических материалов под давлением инертного газа для термопреобразователя. Наука и мир. Международный научный журнал, г. Волгоград.№1 (89), 2021,том 1С.30—35.

5. ЮлдашалиевД. К, Усмонов. Я, Ахмедов, Б. Х. Каримов. Исследование физических параметров термоэлектрических материалов Bi

Te

Sb

Te

.Наука и мир. Международный научный журнал, г. Волгоград.№11 (99), 2021.

6. Каримов Б. Х. Elektronika asoslari. Учебное пособие. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 176 с.

7. Алиев И. Х., Каримов Б. Х. Курс физики ускорителей заряженных частиц. Учебное пособие. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 203 с.

8. Алиев И. Х., Каримов Б. Х., Каримов Ш. Б., Юлдошалиев Д. К. Промышленные и альтернативные аэраторы на основе зелёной энергетики для рыбных водоёмов. Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 221 с.

9. Алиев И. Х., Бурнашев М. А. Ингенциальная математика. Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 149 с.

10. Алиев И. Х., Каримов Б. Х., Каримов Ш. Б., Юлдошалиев Д. К. Развитие технологии аэраторов на основе альтернативных источников энергии. Проект «Электрон». Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 141 с.

11. Алиев И. Х. Программное моделирование явлений ядерных реакций на основе технологии создания множества данных с использованием системы алгоритмов на языке С++. Проект «Ядро-ЭВМ». Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 156 с.

12. Каримов Б. Х., Мирзамахмудов Т. М. Электроника асослари. Учебное пособие. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 184 с.

13. Алиев И. Х. Новые параметры по ядерным реакциям для осуществления на ускорителе заряженных частиц типа ЛЦУ-ЭПД-300. Проект «Электрон». Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 498 с.

14. Алиев И. Х. Программное моделирование явлений ядерных реакций на основе технологий созданий множества данных с использованием системы алгоритмов на языке С++. Проект «Ядро-ЭВМ». Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 498 с.
<< 1 2 3 4 5 6 >>
На страницу:
4 из 6