Оценить:
 Рейтинг: 0

Пятое измерение. Исследование природы времени

Год написания книги
2024
Теги
<< 1 2 3 >>
На страницу:
2 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля

Пока еще малоизвестный Альберт Эйнштейн, занимавшийся в это время специальной теорией относительности, применил квантовую теорию Планка к свету и показал, что свет – это не просто волна, одновременно это еще и частицы, кванты энергии. Позднее кванту света было присвоено имя – фотон. Свет состоит из фотонов, которые создают вокруг себя электромагнитное поле, являющееся волной.

Физиков удивила странная двойственность света, но настоящее потрясение они испытали, когда выяснилось, что электрон, всегда считавшийся твердой частицей, тоже ведет себя как волна. В экспериментах пропущенный через две щели пучок электронов рисовал не две вертикальных полосы, что логично было бы для частиц, а сразу группу полос, что было типичной картиной при интерференции волн. Даже когда запускали электроны по одному, картина не менялась – словно один электрон проходил через две щели сразу. Мало того, оказалось, что электроны способны пропадать и вновь появляться в другом месте, что было совершенно невозможно представить! Если электрон обладает волновыми свойствами, тогда что возмущает среду, в которой существует эта волна? Что колеблется? А если электрон – частица, то как он может в одно и то же время находиться в двух местах?

Ответ дал Макс Борн в 1926 году, заявив, что колеблется вероятность нахождения электрона в данной точке. Невозможно точно и наверняка определить, где находится электрон. Единственное, что мы можем знать, – это вероятность его нахождения. Идею закрепил Вернер Гейзенберг, сформулировав свой знаменитый принцип неопределенности, легший в основу квантовой теории. Принцип гласит, что одновременно знать точно импульс (произведение массы на скорость) и местоположение электрона невозможно. Математически он выражается соотношением неопределенности по формуле, где погрешность измерения координаты, умноженная на погрешность измерения импульса, всегда должна быть больше или равна постоянной Планка. Это накладывает ограничение: если мы точно определяем месторасположение частицы, то не можем точно знать ее скорость. И наоборот: определив скорость, мы получаем неопределенность с координатами.

Принцип неопределенности аналогичным образом связывает не только координаты и скорость, но и другие пары взаимно увязанных характеристик частиц. Так, невозможно безошибочно измерить энергию квантовой системы и определить момент времени, в который она этой энергией обладает. Неопределенность является следствием корпускулярно-волнового дуализма. Элементарная частица – это частица, но вероятность ее нахождения в любой заданной точке задается волновой функцией. Пока мы измеряем одну величину, другая в это время успевает как бы умчаться от нас вдаль, стать размытой, неопределенной, выдавая большие погрешности в расчетах.

В 1927 году Нильс Бор и Вернер Гейзенберг сформулировали Копенгагенскую интерпретацию, согласно которой квантовая механика описывает не микрообъекты сами по себе, а их свойства, проявляющиеся на макроуровне. Макроуровень, или окружающий реальный мир, создается классическими измерительными приборами в процессе акта наблюдения. Именно акт измерения вызывает мгновенное схлопывание, «коллапс волновой функции».

Копенгагенскую интерпретацию сами физики часто сравнивают с философией епископа Беркли [1], который задавал вопрос: если в лесу падает дерево и вокруг нет никого, кто мог бы это услышать, то производит ли его падение звук? Копенгагенская интерпретация квантовой теории не отвечает на этот вопрос однозначным «да» или однозначным «нет». Ее ответ куда более неприятен, чем сам вопрос: если рядом с деревом никого нет, то это дерево существует как сумма множества различных состояний. Оно может не только расти или падать, но и существовать, например, в виде только что проклюнувшегося ростка, в виде обугленного под ударом молнии столба, в виде поленницы дров или листа фанеры и т.д. Только когда вы смотрите на дерево, его волновая функция чудесным образом схлопывается, превращаясь в конкретный объект.

Твердыни, которые еще совсем недавно казались незыблемыми, прямо на глазах превращались в зыбучие пески. Такое понятное и вполне определенное будущее предсказать уже было нельзя – можно говорить только о вероятности того или иного течения событий. На этом поле вероятностей возникал пусть небольшой, но все же шанс для невероятного – какой-нибудь немыслимой чертовщины, противоречащей здравому смыслу. Квантовая «ересь» взорвала мир физики и расколола его на два лагеря. Вместе с ним вдребезги рушилась вообще вся прежняя мировоззренческая вселенная, требуя философского переосмысления физической реальности. Новый фундаментальный физический принцип, принцип неопределенности, разрушал фундамент детерминизма. Больше не существует ни однозначной определенности в природе, ни высшего промысла – миром правит случайность.

Амбассадорами лагеря сторонников квантовой теории были Бор и Гейзенберг, а противниками оказались Эйнштейн и Шредингер, стоявшие у ее истоков. Признавая несомненные успехи новой теории и даже временами искренне восторгаясь ими, отцы–основатели открыто недолюбливали свое дитя за его непредсказуемый характер. Шредингеру, автору волновых уравнений, применяемых для решения квантовых задач, она не нравилось настолько, что он даже сожалел о своей причастности к ней. В одной из своих статей он отмечает, что квантовая механика «пока всего лишь удобный трюк, который, однако, приобрёл… чрезвычайно большое влияние на наши фундаментальные взгляды на природу». Вечным оппонентом квантовой теории оставался и Эйнштейн. В пылу жарких научных споров он не раз восклицал: «Бог не играет в кости со Вселенной!». Великий ученый не отвергал теорию полностью, но не мог принять ее в качестве окончательного варианта для фундамента физики. Эйнштейну не хватало в ней единства, целостности, полноты картины мира, какого-то скрытого, но очень важного параметра.

В 1935 году после опубликования статьи Эйнштейна–Подольского–Розена о неполноте квантовой механики Шредингер направил Эйнштейну письмо со словами поддержки и в продолжение темы предложил мысленный эксперимент, который наглядно демонстрировал суть проблемы. Эксперимент получил широкую известность как парадокс «кота Шредингера», Иллюстрация 4.

Иллюстрация 4. Кот Шредингера. Кот в условиях квантовой неопределенности. Кот жив или кот мёртв?

Кот помещается в закрытую коробку. За перегородкой находится «дьявольская машина»: счётчик Гейгера, крупинка радиоактивного вещества и синильная кислота. Когда атом вещества распадется, вылетит элементарная частица, счетчик Гейгера сработает и приведет в действие молоточек. Он разобьет колбу с синильной кислотой и кот тут же отравится. Когда вылетит частица никто не знает, но наблюдателю задается вопрос: кот жив или мертв? Так как распад атома – исключительно квантовое событие, то и кота придется описывать как квантовый объект. До тех пор, пока наблюдатель не открыл коробку, кот не жив и не мертв. Он существует в виде сочетания различных квантовых состояний или суммы двух волн. Одна из этих волн описывает мертвого кота, другая – живого. Вероятность 50%, что атом не распался и кот жив, такая же вероятность, что атом распался и кот мертв. Живой и мертвый кот как бы смешаны и равномерно размазаны по объему коробки.

Если следовать копенгагенской интерпретации, единственный способ определить, жив кот или мертв – открыть короб и произвести наблюдение. В этот момент волновая функция схлопнется в мертвого или живого кота. Наблюдение (для которого требуется сознание) будет определять его существование.

По Шредингеру суть эксперимента состояла в том, что неопределённость на квантовом уровне должна привести к неопределённости, размытости в макроскопическом масштабе («смесь» живого и мёртвого кота). Это не соответствует требованию определённости состояний макрообъектов независимо от их наблюдения и, следовательно, не позволяет принять «модель размытости» в качестве реальной картины мира. Эйнштейну эксперимент понравился, хотя он рассматривал его суть несколько по-иному – как возможность статистического описания эксперимента и статистического опровержения копенгагенской интерпретации.

Аргументы Эйнштейна и Шредингера не могли остановить дальнейшее успешное развитие квантовой физики, наоборот, помогли работе над прояснением некоторых принципиально важных её аспектов. Старая копенгагенская интерпретация теории перестала пользоваться популярностью – сегодня она уступила место интерпретации многомировой. В новой трактовке Вселенная расщепляется надвое, где в одной вселенной кот жив, а в другой – мертв. Или на множество вселенных, где кот существует в различных состояниях.

Научная и философская проблема физической реальности так и осталась нерешенной. Кот Шредингера продолжает гулять сам по себе, где и как ему вздумается. Сегодня наука, достигнув фантастических высот, вновь признает, что на трудном пути познания природы ей, как и некогда великому физику, не хватает какого-то неизвестного, но очень важного параметра, позволяющего достичь единой и целостной картины мира. Все больше исследователей, подозревая, что Эйнштейн, возможно, был прав, обращаются к теме единой теории поля. Ученые продолжают поиски, предполагая, что могут существовать пока не обнаруженные элементарные частицы, по своим свойствам не совсем похожие на другие частицы Стандартной модели. Они должны дать возможность найти концы нитей в клубке квантовой запутанности. Поиски недостающих частей системы ведутся в космосе и на ускорителях.

Из элементарных частиц состоит все известное нам вещество, вся таблица Менделеева. Атом состоит из облака электронов, летающих вокруг крохотной плотной сердцевины, где сосредоточена почти вся масса – ядра, состоящего из протонов и нейтронов. Оно примерно в 100 тысяч раз меньше самого атома, т.е. в атоме больше пустоты, чем твердости. Если бы ядро было размером с горошину, то атом был бы по размеру с футбольный стадион. А если из атомов тела человека убрать всё свободное пространство, то человек мог бы уместиться в крошечной пылинке.

Однако оказывается, что могут существовать и другие атомы, экзотические. В так называемом мюонном атоме, на место одного из электронов встраивается отрицательный мюон, характеристики которого совпадают с характеристиками электрона во всем, кроме массы. Из-за того, что мюон тяжелее своего собрата–электрона в 207 раз, мюонная орбиталь меньше электронной ровно на столько же, соответственно, размер мюонного атома получается в те же 207 раз меньше обычного. Но ядро-то остается прежним. Поэтому для мюона вероятность оказаться внутри ядра возрастает в 207

, то есть почти в девять миллионов раз больше по сравнению с электроном. Для тяжёлых атомов радиус орбиты мюона становится меньше радиуса ядра. Облако находится уже не во вне, а начинает струиться где-то в недрах ядра. Схематичное сравнение обычного и мюонного атомов показано на Иллюстрации 5. Такое строение мюонного атома, похожее на коробочку с сюрпризом, сильно влияет на его свойства.

Иллюстрация 5. Сравнение моделей обычного (слева) и мюонного (справа) атомов

Экзотический квант

Понятие «экзотическая материя» применяется в физике элементарных частиц, в теории о строении «кротовых нор», используется при создании материалов с необычными свойствами. Так называют вещество, которое нарушает какие-либо известные физические закономерности.

К экзотической материи с полным на то основанием можно отнести и человека. Он обладает целым набором характеристик, нарушающих законы физики. Человек, в отличии от всей прочей материи, бесцеремонно попирает главное достояние физической науки – он нарушает энергетические условия.

Соблюдение энергетических условий означает, что камень не будет катиться от подножия на вершину горы, он может только падать вниз с вершины. Река не будет течь в гору, она может только стекать с горы, а на равнине будет искать себе русло, огибая все возвышения рельефа и стремясь к достижению уровня мирового океана. Всё в природе стремится к соблюдению энергетических условий. Всё, кроме человека – он устремлен на достижение вершин. Даже если у него нет намерения покорить горный Эверест, он стремится к достижению иных вершин: профессиональных, спортивных, научных и т. д. И даже если человек не стремится ни к каким вершинам, ему все равно приходится постоянно преодолевать энергетический барьер: учиться, справляться с трудностями взросления, выстраивать семейные отношения, добывать хлеб насущный, заботиться о близких и т. д. Преодоление – это то, что движет прогрессом человеческого общества. Не свободное скольжение по физической глади жизни, а воля к преодолению делает человека человеком и отличает его от всех иных видов живой и неживой материи.

Человек нарушает даже законы гравитации. Разумеется, он, как и вся другая материя на Земле, испытывает на себе силу гравитационного притяжения. Но способен преодолевать ее – он может, например, подпрыгнуть. Человек сообщает мышцам ног силу для совершения работы, направленной на преодоление силы тяжести. Он использует свою внутреннюю энергию для придания телу ускорения, направленного в сторону, противоположную действию сил гравитации. Его действие является гравитационно-отталкивающим. Он обладает способностью кратковременного преодоления гравитации без приложения сторонних сил – благодаря этому может перемещаться по поверхности планеты в любом направлении. В процессе освоения ближнего космоса человек смог полностью оторваться от оков гравитации. Для этого ему потребовалась дополнительная энергия, но он смог ее получить и использовать.

Человек – это сложная система, состоящая из множества клеток, молекул, органов, подсистем. При этом каждый отдельный элемент, оторванный от связей с системой человеческого организма, сам по себе не имеет абсолютно никакого значения. Человек – это единое целое, которое несравненно больше, чем просто сумма его частей. В этом целостном единстве он является неделимой частицей. Человека с полным на то основанием можно назвать антропным квантом.

Квант, конечно, не типичный, экзотический, но это именно квант:

• Во-первых, человек обладает собственной внутренней энергией – способностью к действию, деятельности, совершению работы, не связанной с воздействием на него иных сил или переносом вещества.

• Во-вторых, энергия одного человека – это самая маленькая порция энергии вещества, называемого разумной живой материей. Меньше не бывает.

• В-третьих, это неделимая величина. Человек может поделиться результатами работы своей энергии, но не может поделиться самой энергией.

Антропный квант имеет свои наблюдаемые физические характеристики, которыми можно описать его физическое состояние: массу, рост, возраст, силу, скорость, давление и т. д. Физические характеристики меняются в зависимости от различных факторов, особенно от возраста, но при этом не могут выходить за рамки определенного диапазона.

Антропный квант существует как эффективная энергетическая машина, работающая по законам физики, и являющаяся одновременно:

• Потребителем энергии.

• Преобразователем энергии.

• Генератором энергии.

• Аккумулятором энергии.

Человек потребляет энергию вместе с пищей в количестве, примерно соответствующем потреблению одной лампочки накаливания на 100-150 Ватт. В результате обменных процессов потребленная энергия преобразуется в тепловую энергию тела, в кинетическую энергию сокращения мышц, в электрическую энергию центральной нервной системы. Часть энергии человек расходует «на себя» – на переваривание пищи, на перемещение в пространстве массы своего тела и на обеспечение работы внутренних органов. Наиболее энергетически затратным органом является мозг – составляя всего 2% от массы тела, он никогда не прекращает свою работу и потребляет в состоянии покоя около 10% всей энергии организма, в состоянии активности – до 25%, а в стрессовых ситуациях – до 40%. Помимо обеспечения жизнедеятельности собственного организма, часть энергии расходуется на совершение внешней работы. Человек обладает способностью аккумулировать энергию и обходиться в течение нескольких дней без потребления пищи.

Антропный квант обладает собственным спином. Это уже чисто квантовая характеристика. Что именно она дает человеку в энергетическом плане – неизвестно, это совершенно не исследованное поле, никто не изучал этот вопрос. Если обратиться к аналогиям в микромире, то там спин обеспечивает квантовые системы собственным моментом импульса, переводит их из одного пространства состояний в другое – заставляет «биться сердце» атомов, превращая их в неутомимые природные perpetuum mobile. За счет квантовых эффектов может происходить практически бесконечное движение в некоторых физических процессах, например, петлевые токи в сверхпроводниках и вихри в сверхтекучей жидкости. Следуя аналогиям, можно предположить, что спин – это очень важная характеристика человека, связанная с его жизненной энергией, с самой жизнью.

Для антропного кванта выполняется принцип суперпозиции его энергетических состояний. Это тоже квантовая характеристика. Человек может находиться в состоянии бодрствования и в состоянии сна. Это два разных состояния одной системы, которые являются ортогональными друг к другу и дискретными. Если человек спит, то он не может бодрствовать и, наоборот, если человек активен, то он не может одновременно спать.

Есть у антропного кванта и своя «постоянная Планка», связанная с суточным циклом жизнедеятельности человека и характеризующая переход антропного кванта из одного энергетического состояния в другое. Она будет значительно больше Планковской константы, однако и наш квант сильно отличается от обычных.

Кот Шредингера – 2

Проведем со злосчастным котом Шредингера еще один эксперимент, в обратном порядке и на этот раз без урана и кислоты. Мы не будем ждать момента, когда кот перейдет в смешанное состояние. Привлечем кота, который с самого начала эксперимента «не жив и не мертв».

Возьмем прикрытую коробку, где находится спящий кот. Наблюдателю предстоит ответить на тот же сакраментальный вопрос: кот жив или мертв? При этом ему запрещено открывать коробку или производить какое-либо иное возмущение среды. Теперь сам наблюдатель оказывается в условиях квантовой неопределенности: он видит координату кота – коробку, но его сигнальная система (зрение, слух и др.) не имеет возможности замерить импульс кота – кот не перемещается и из коробки не доносится ни звука. Пока кот безмятежно спит, для наблюдателя вероятность 50%, что там находится живой кот, и такая же вероятность, что там находится кот мертвый. Но как только от кота пошел какой-либо импульс, – он замяукал или высунул голову из коробки, – для наблюдателя становится очевидным, что кот жив, Иллюстрация 6.

Правда, при этом в состояние неопределенности приходит координата – проснувшись, кот получает возможность перемещаться в пространстве. Перед нами наглядная иллюстрация принципа неопределенности Гейзенберга. Пока спящий кот «привязан» к определенной точке пространства, нам известно его местоположение, но «заглушен» импульс. Если кот проснулся, то у него появляется импульс, но совсем не факт, что нам удастся быстро обнаружить его в какой-то конкретной точке открытого пространства.

Иллюстрация 6. Кот Шредингера-2

Наблюдатель в условиях квантовой неопределенности. Кот жив или мёртв?

Задача перед экспериментом стоит та же, что и в его оригинальной версии: попытаться обнаружить за квантовой механикой какой-то более глубокий скрытый физический фундамент, позволяющий перейти от состояния неопределенности к состоянию определенности и смоделировать нашу «кошачью» квантовую систему с помощью детерминированной физики. Но поле поиска в нашем эксперименте существенно меняется. Нам не нужно будет смешивать, а потом пытаться как-то разделить живого и мертвого кота. Мы будем вести поиски по границе, отделяющей спящего кота от проснувшегося.

Сон является естественным физиологическим состоянием человека и имеет четко выраженную суточную цикличность. Он обеспечивает организм отдыхом, играет важную роль в процессах метаболизма, способствует переработке и хранению информации, восстанавливает иммунитет и защитные силы организма.

Природа сна, на которую наброшен покров чего-то мистического, интересовала людей во все времена. Древние греки считали ночной сон и сон вечный близкими явлениями. Аристотель описывал сон как «пограничное состояние между жизнью и не жизнью». При этом люди всегда замечали и использовали целебную силу сна. Изучением его природы занимались выдающиеся русские ученые-физиологи И.М. Сеченов и И.П. Павлов, советско-израильский психофизиолог В.С. Ротенберг, основатель психоанализа З. Фрейд, Исследованию сна посвятил свою жизнь уроженец Российской империи американский нейрофизиолог Н. Клейтман, обнаруживший и описавший разные фазы сна, в том числе фазу быстрого сна (БДГ–фазу или REM–фазу).

Природа сна изучается, однако она по-прежнему ставит больше вопросов, чем дает ответов. Медицина исследовала человека вдоль и поперек, просеяла его до мельчайших молекул, научилась делать реинжиниринг генома – создавать младенцев с заранее заданными характеристиками. При всем том до сих пор не известно, для чего вообще нужен сон.

Когда-то считалось, что сон необходим для вывода токсинов, которые накапливаются за время бодрствования и начинают отравлять мозг, но никаких специфических «ядов сна» так и не было обнаружено. Сон необходим для отдыха уставшего тела? Но люди, у которых тело не работает, страдающие заболеваниями, связанными с атрофией мышц, точно также нуждаются в сне. Сон нужен для отдыха мозга, нагруженного полученной за день информацией? Но оказалось, что мозг во время сна не только не отдыхает, а наоборот, его нейроны работают даже более интенсивно, чем во время бодрствования.
<< 1 2 3 >>
На страницу:
2 из 3

Другие электронные книги автора Галина Георгиевна Юрковец