1. Подготовка данных:
– Подготовить набор данных, содержащий временные значения SSWI, параметров ?, ?, ?, ?, ? и соответствующие временные метки.
2. Разделение данных:
– Разделить набор данных на обучающий и тестовый наборы, используя временные метки для определения точки разделения.
3. Оптимизация параметров:
– Использовать алгоритм оптимизации, такой как генетический алгоритм или оптимизация симуляцией отжига, для поиска оптимальной комбинации параметров ?, ?, ?, ?, ?, которая минимизирует ошибку прогнозирования SSWI на обучающем наборе.
– Применять оптимизацию, изменяя значения параметров и оценивая ошибку прогнозирования до достижения оптимальных значений.
4. Построение модели прогнозирования:
– Используя найденные оптимальные значения параметров ?, ?, ?, ?, ?, построить модель прогнозирования временного ряда SSWI.
– Модель может быть основана на алгоритмах машинного обучения, временных рядах или других подходах, которые лучше всего соответствуют характеристикам данных.
5. Тестирование производительности модели:
– Протестировать производительность модели на тестовом наборе данных.
– Оценить ошибку прогнозирования SSWI и сравнить прогнозные значения с фактическими значениями SSWI.
6. Использование оптимальных значений параметров:
– Использовать найденные оптимальные значения параметров ?, ?, ?, ?, ? для последующего прогнозирования SSWI и минимизации ошибок прогнозов.
Этот алгоритм позволяет определить оптимальные параметры, настроить модель прогнозирования и использовать их для минимизации ошибок прогнозирования SSWI. Он может быть полезен для оптимизации системы управления и прогнозирования в областях, где SSWI играет важную роль, таких как физика, материаловедение и ядерная энергетика.
Код будет зависеть от выбранного языка программирования и используемых алгоритмов оптимизации и моделей прогнозирования. Вот пример общего шаблона кода на языке Python
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from scipy.optimize import minimize
# Шаг 1: Подготовка данных
# Загрузка временных значений SSWI, параметров и временных меток
sswi_data =…
alpha_data =…
beta_data = …
gamma_data = …
delta_data = …
epsilon_data = …
timestamps = …
# Шаг 2: Разделение данных
# Разделение набора данных на обучающий и тестовый наборы
x_train, x_test, y_train, y_test = train_test_split(
np.column_stack((alpha_data, beta_data, gamma_data, delta_data, epsilon_data)),
sswi_data,
test_size=0.2,
shuffle=False
)
# Шаг 3: Оптимизация параметров
# Определение функции ошибки для оптимизации
def error_function(params):
alpha, beta, gamma, delta, epsilon = params
sswi_predicted = (alpha * beta * gamma) / (delta * epsilon)
return mean_squared_error(y_train, sswi_predicted)
# Начальные значения параметров
initial_params = [1.0, 1.0, 1.0, 1.0, 1.0]
# Оптимизация параметров с использованием метода minimize
optimized_params = minimize (error_function, initial_params, method=«Nelder-Mead’).x
# Шаг 4: Построение модели прогнозирования
# Использование оптимальных значений параметров для модели прогнозирования