Оценить:
 Рейтинг: 0

Максимизируйте эффективность машинного обучения. Полное руководство по информационной системе

Автор
Год написания книги
2024
<< 1 2 3 4
На страницу:
4 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля

Подробное описание работы глубокого обучения и нейронных сетей

Глубокое обучение – это подраздел машинного обучения, который использует нейронные сети с большим количеством слоев для решения сложных задач анализа данных. Нейронные сети – это модели, построенные на аналогии с нейронной системой мозга, состоящие из множества взаимосвязанных нейронов.

Нейронные сети обычно состоят из трех типов слоев: входного слоя, скрытых слоев и выходного слоя. Входной слой принимает данные, которые необходимо обработать или анализировать. Затем данные передаются через скрытые слои, которые выполняют вычисления и извлекают признаки из данных. Каждый нейрон в слое принимает входные данные и применяет функцию активации, например, ReLU (Rectified Linear Unit), сигмоиду или гиперболический тангенс, для создания нелинейной функции от взвешенной суммы входов. Выходные значения скрытых слоев передаются последующим слоям и, в конечном счете, выходной слой предсказывает результаты или классифицирует данные.

Обучение нейронных сетей включает два основных этапа: прямое распространение и обратное распространение ошибки.

Во время прямого распространения данные передаются от входного слоя до выходного слоя. Нейроны выполняют вычисления и передают сформированные значения дальше. Каждый нейрон вычисляет взвешенную сумму входов, применяет функцию активации и передает результат следующему слою.

После прямого распространения используется обратное распространение ошибки. В этом процессе рассчитывается ошибка предсказания сети и распространяется обратно, начиная с выходного слоя и двигаясь к входному слою. Во время обратного распространения веса в сети обновляются с помощью градиентного спуска, чтобы минимизировать ошибку предсказания. Процесс повторяется до достижения требуемого уровня точности или сходимости.

Глубокие нейронные сети позволяют обрабатывать сложные данные, такие как изображения, звук и текст, что делает их мощными для различных задач, таких как компьютерное зрение, распознавание речи, машинный перевод, генерация контента и многое другое. Однако требуется большое количество данных и долгое время для обучения параметров модели. Поэтому обычно используется аппаратное обеспечение с высокой вычислительной мощностью, например, графические процессоры (GPU) или специализированные процессоры для ускорения обучения и предсказаний нейронных сетей.

В глубокое обучение и нейронные сети могут быть применены для анализа данных, классификации, кластеризации, предсказания временных рядов, обработки изображений и других задач, чтобы предоставить более точные и глубокие аналитические результаты.

Иллюстрация шагов обучения алгоритмов на большом объеме данных

Обучение алгоритмов на большом объеме данных часто включает следующие шаги:

1. Предобработка данных: перед началом обучения необходимо предобработать данные.

В процессе предобработки данных необходимо выполнить следующие шаги:

1.1. Удаление выбросов: Выбросы – это экстремальные значения, которые сильно отличаются от остальных данных. Они могут искажать обучение модели и влиять на точность предсказаний. Удаление выбросов может быть выполнено путем нахождения значений, выходящих за пределы определенного порога или на основе стандартного отклонения данных.

1.2. Обработка пропущенных значений: Пропущенные значения в данных могут возникнуть из-за ошибок в сборе данных или отсутствия информации. Обработка пропущенных значений включает такие методы, как удаление записей с пропущенными значениями, заполнение пропущенных значений средними или медианами, использование методов машинного обучения для предсказания пропущенных значений или использование специальных методов, таких как множественная импьютация.

1.3. Нормализация признаков: Некоторые алгоритмы машинного обучения могут быть чувствительны к несбалансированным или различающимся по масштабу признакам. Нормализация признаков позволяет привести их значения к определенному интервалу или стандартному распределению. Популярными методами нормализации являются масштабирование на интервал [0,1], стандартизация с нулевым средним и единичной дисперсией или нормализация по Z-оценке.

1.4. Преобразование категориальных признаков в числовые: некоторые алгоритмы машинного обучения требуют числовых данных. Если у вас есть категориальные признаки, такие как «пол» или «страна», их можно преобразовать в числовые признаки, используя методы, такие как кодирование меток или кодирование с одним активным состоянием (one-hot encoding).

1.5. Разбиение данных на обучающую, проверочную и тестовую выборки: для оценки качества модели необходимо разделить данные на независимые наборы. Обучающая выборка используется для обучения модели, проверочная – для настройки гиперпараметров и выбора лучшей модели, а тестовая выборка – для оценки качества предсказаний на неизвестных данных. Разбиение данных может быть выполнено случайным образом или с использованием временных разделителей, в зависимости от типа данных и целей анализа.


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2 3 4
На страницу:
4 из 4