Оценить:
 Рейтинг: 0

A History of Inventions, Discoveries, and Origins, Volume II (of 2)

Год написания книги
2017
<< 1 ... 8 9 10 11 12 13 14 15 16 ... 81 >>
На страницу:
12 из 81
Настройки чтения
Размер шрифта
Высота строк
Поля
In the year 1669, John Evelyn gave to the Royal Society of London a complete description of Locatelli’s invention[553 - Phil. Trans. vol. v. No. 60, p. 1056.]. He there says that the inventor went with his machine to Spain, where he proved the advantage of it by public experiments, and described them in a Spanish work, dedicated to Geronimo de Camargo, member of the Consejo real de Castilla, who was commissioned by the king to make known and promote the use of this machine, the sale of which was secured to the inventor at a price fixed in his patent. This Spanish work, from which Evelyn made an extract, was printed with the Austrian approbation of Crollolanza, and the date Aug. 1st, 1663. Locatelli must immediately after have gone to Spain, for it is there stated that his machines were made and sold in great abundance at Madrid, in 1664. The invention belongs, therefore, to the year 1663.

This machine was exceedingly simple. The seed-box, the cylinder of which was furnished with two small wheels, required only to be hooked or fastened, by means of ropes, to the stilt of the plough. A figure of it may be found in the before-mentioned German tract; also in the Philosophical Transactions, and thence copied into Duhamel’s Traité de la Culture des Terres[554 - Paris, 1753, 12mo, i. p. 368, tab. 6. Duhamel has committed a double error. He speaks of the invention as if the first experiments were made in Spain, and as if those in Austria had been later. He says also, that the latter were made dans le Luxembourg in Istria. The English account also says erroneously Luxembourg, instead of Lachsenburg or Laxemburg, which is in Austria, and not in Istria.].

The Italians, however, dispute with Locatelli the honour of the invention. They assert that one of their countrymen, named M. Giovanni Cavallina, of Bologna, proposed such a sowing-machine a century and a half before; and they refer for a proof to the account preserved by Gio Battista Segni in his work upon Scarcity. This book I have never seen. Haller gives the title from Seguier, and says that it was first printed at Bologna, in 1602; but Zanon states 1605, and says that this Segni, who is not noticed by Iöcher, was a canonicus regularis[555 - Of Segni an account may be found in Notizie degli Scrittori Bolognesi raccolte da Giovanni Fantuzzi. In Bologna 1784–1794, 9 vols. 4to, vii. p. 377. Segni, who died in 1610, wrote a great many ascetic books, the names of which are there given.]. Of Cavallina I have not been able to find any further account; not even in the large and full work of Fantuzzi. I can therefore give only the description of Segni as transcribed by Zanon[556 - Dell’ agricultura, dell’ arti e del commercio. Lettere di Antonio Zanon. In Venezia 1764, 8vo, vol. iii. p. 325.]. From this it appears that the machine alluded to had also a seed-box with two wheels, and might be compared to a bolting-mill, but below each hole of the bottom board there seems to have been an iron funnel, which before was shaped like a plough-share. The machine, therefore, seems to have formed as many small furrows as it dropped grains of corn; and, as far as can be judged, there was in the bottom only one row of holes. It appears also that each grain of corn, as soon as it dropped, was covered with earth by the machine. Whether Locatelli took advantage of this invention, and gave it out, with some alteration, as his own, cannot be easily determined.

Soon after Locatelli’s invention another sowing-machine was proposed at Brescia, by the Jesuit Lana, who seems to have had no knowledge of the preceding ones; at least he makes no mention of them. The case with Lana was perhaps the same as with many ingenious men, who possess great powers of invention. As they never read, but only think, they are unacquainted with what others have done before them, and therefore consider every idea which comes into their mind as new. He proposed a harrow, the spikes of which should make holes in the earth, in the same manner as gardeners do with their bean-planter, and the grains of corn were to fall into these holes from a box pierced like a sieve, and placed over the harrow[557 - Prodromo, overo saggio di alcune inventioni nuove, premesso all’ arte maestra. In Brescia 1670, fol. p. 96, fig. 26.].

I do not know whether this, at present, could be called a sowing-machine; but it is not improbable that an apparatus of this kind would facilitate the planting, or, as it is termed, setting of wheat, which in modern times has been revived in England, and particularly in Suffolk. For this purpose holes are made three inches apart, in rows four inches distant from each other, with a bean-planter, by men and women. Each labourer is followed by three children, who throw two or three grains of seed into each hole. One labourer in a second can make four holes, and in two or three days plant an acre. For this he obtained nine shillings, one-half of which was given to the children[558 - See the excellent account of the agriculture in Suffolk in my Journal, the Beytragen zur Oekonomie, &c., i. p. 1. It was written by M. F. Wild, of Durlach, who in the year 1767 was one of my pupils, and afterwards became teacher in the Institute of Education at Colmar. But alas! I do not know whither he has now been swept by the vortex of the revolution.]. By these means there is a saving of one-half the seed; and this defrays the expenses. The wheat also, when it grows up, is cleaner as well as more beautiful; and this method, besides, affords employment to a great number of persons.

However minute and ridiculous this method of planting may appear to our practical farmers, it is nevertheless true that it has been found beneficial in Upper Lusatia[559 - Leske Reise durch Sachsen. Leipzig, 1785, 4to, p. 319.].

The objection that corn when planted in this manner may throw out too many stems, which will not all ripen at the same time, can be true only when the grains are placed at too great a distance from each other. The German mode of farming however is still too remote from horticulture to admit of our attaching great value to the advantages with which this method is attended.

I shall here remark, that Sir Francis Bacon says that in his time, that is, in the beginning of the seventeenth century, attempts had been made to plant wheat, but being too laborious it was again abandoned, though he declares it to be undoubtedly advantageous[560 - Sylva Sylvarum, cent. 5, § 442.]. In the most populous districts of China almost all the corn is set, or it is first sown in forcing-beds, and then transplanted. The English call the labour with the sowing-machine drilling, and the planting of wheat they name dibbling.

[Several sowing-machines have been invented, and patents taken out for them in late years. As it is very difficult to give a description of them, and still more so for the reader to comprehend them without figures, we refer to the Penny Cyclopædia, art. “Sowing-machine,” for an account of the more important.]

MANGANESE[561 - [The word manganese, strictly speaking, designates the metal itself, the peroxide of which is understood by the author whenever the word manganese occurs in the text.]]

That the art of glass-making may have arisen from an accident, such as that mentioned by Pliny[562 - Lib. xxxvi. 26, § 25. – See Hambergeri Vitri Historia, in Comment. Societ. Götting. tom. iv. anni 1754, p. 487.], I am ready to admit; but by what accident were artists made acquainted with the use of manganese, a mineral the outward appearance of which seems to announce nothing that could be useful to the glass-maker? It is not found in such abundance as to allow us to suppose that it naturally presented itself; nor do we know that any older application of it may have induced the ancients to employ and examine it in such a manner that the present use of it might be accidentally discovered. In general, it resembles some kinds of iron-stone, which it was considered to be till a very late period. That iron, however, colours glass must have been very early remarked; and therefore it could occur to no one to employ manganese for depriving frit[563 - Under this appellation, writers on the art of glass-making understand a mixture of sand or siliceous earth and alkaline salts, which at the German glass-houses, where the above word is seldom heard, is called Einsatz. It appears to have been brought to us, along with the art, from Italy, where it is written at present fritta, and to be derived from fritto, which signifies something broiled or roasted. It seems to be the same word as freton, which occurs in Thomas Norton’s Poem, Crede mihi, sive Ordinale, where it however signifies a particular kind of solid glass, fused together from small fragments. This Englishman lived about the year 1477. His treatise was several times printed.] of its colour. It produces this decoloration only when it is added sparingly, and according to a determinate proportion; otherwise it gives to the glass a violet colour, something similar to that of the amethyst.

The application of manganese was certainly taught by accident, and not by theory. But in regard to the question, why it frees glass from its dirty colour, it must be admitted, if we readily acknowledge the truth, that we can offer only hypotheses; as the old chemists called in the aid of phlogiston, and the new that of oxygen[564 - [The action of peroxide of manganese (the only compound of the metal used in the manufacture of glass) is simple and clearly understood. The sand (silica) used in the manufacture of glass frequently contains iron, which by the heat necessary for the fusion of the glass becomes reduced to the state of protoxide, giving the glass a greenish or yellowish colour; also, if any organic substance be present in the materials (and where sulphate of soda is used, charcoal is added), the glass is not colourless. When peroxide of manganese is added, it parts with some of its oxygen, becoming reduced to the protoxide, which remains colourless in the glass, the protoxide of iron absorbing the oxygen, becomes at the same time converted into the peroxide, which also imparts no colour to the glass, which is thus rendered colourless. If more of the peroxide of manganese be added than the carbon or protoxide of iron can reduce, it will tinge the glass of an amethyst colour, as stated in the text.]]. Did a false hypothesis, then, conduct to this discovery? That this was the case, has been asserted by old as well as more modern writers, and is no doubt possible. Thus Kepler, from an erroneous hypothesis in regard to the revolution of the planets, discovered the ratio of their motion, according to their distance from the sun; and such instances may be adduced in favour of hypotheses which have done more harm than good. But, in my opinion, in examining the origin of the ancient arts, we ought not to give credit to any cause assigned for an invention until no other can be found. In regard to the art in question, I think I can mention one which, at any rate, has probability in its favour, and which I shall here submit to the reader’s decision.

That it was observed at an early period that metallic oxides, and particularly that of iron, which most frequently occurs, communicate various colours to glass, has been already proved[565 - See the History of Ruby-glass in vol. i. p. 123.]. It needs therefore excite no wonder that men should be induced to make experiments on colouring glass with various minerals, and especially such as contained iron. Now, since manganese, as already said, has a great resemblance to iron-stone, it was also occasionally employed; and it was soon found that this supposed species of iron-stone, according as it is used in greater or less quantity, gives to glass many beautiful shades of a violet, red, and dark brown colour. As it was necessary that the artist should weigh the manganese, in order to proportion it to the vitreous mass, according to the required colour, it is possible that the glass, when a very small quantity had been added, was found to be colourless. This observation must have been made with the greater satisfaction, and more readily turned to advantage, the higher colourless glass, which approached nearest to rock crystal, was at that time esteemed[566 - Plin. xxxvi. 26, p. 759, and lib. xxxvii. cap. 6, p. 769; he says that artists could make glass vessels nearly similar to those of rock crystal; but he remarks that the latter had nevertheless risen in price.].

The period however when this great improvement in one of the most useful arts was fortunately introduced, cannot with certainty be determined; but it is very probable that it was practised in the time of Pliny. Were not this the case, what should have induced him, more than once, to remark that the magnet was employed in glass? Under this name the ancients certainly comprehended manganese; which, in general, had a resemblance to the magnet, and was considered as such by Agricola, Kircher, and others, at a more modern period. Pliny[567 - Lib. xxxvii. 24, § 66.], in one passage, speaks of a kind of magnet which was found in Cantabria, not in veins, but interspersed or in nuclei; and he adds that he did not know whether it was useful in glass-making, because no one had ever tried it. This use of manganese then must at that time have been very common, since it occurred so readily to a writer in speaking of a supposed magnet.

Another passage of Pliny has been supposed to allude to manganese, but in my opinion with much less probability. It is that where he says Alabandicus flows in the fire, and is fused at the glass-houses[568 - Plin. xxxvi. 8, § 13, p. 735.]. But by that term he seems to understand a kind of marble, according to the opinion of Isidorus, by whom the word is repeated. As a calcareous earth it was perhaps added to promote the fusion of the sand. Camillus Leonardus, however, considered the Alabandicus as manganese[569 - Speculum Lapidum, Parisiis, 1610, 8vo, p. 71. It may not be superfluous here to remark, that this Alabandicus of Pliny must not, as is often the case, be confounded with the precious stone to which he gives the same name, lib. xxxvii. cap. 8. The name properly denotes only a stone from Alabanda in Caria. It occurs, but much corrupted, as the name of a costly stone, in writings of the middle ages. See in Du Cange Alamandinæ, Alavandinæ, Almandinæ; and even in our period so fertile in names, a stone which is sometimes classed with the ruby and sometimes with the garnet, and which is sometimes said to have an affinity to the topaz and hyacinth, is called Alamandine and Alabandiken. See Brückman on Precious Stones, who in the second continuation, p. 64, deduces the word from Allemands, without recollecting the proper derivation, which he gives himself, i. p. 89 according to Pliny.].

It is not improbable that the ancients employed manganese, if not for glazing, at any rate for painting their pottery or earthenware, as soon as they became acquainted at the glass-houses with its susceptibility of being converted into a coloured vitreous mass.

But this is far from being proved, though count Caylus, Genssane and others positively assert that the so-called Etruscan vases and lamps were painted with the same manganese that we use for our earthen-ware.

Those who attempt to trace out the history of the arts must be very cautious not to admit, without sufficient proof, that what the ancients accomplished was effected by the same means as those employed by us for the same purpose. This, in some cases, may be true; but in many others false. Thus, they made a beautiful kind of blue and red glass, without being acquainted with our cobalt and mineral purple; and they performed very long sea voyages without our compass. It is the duty of the historian either to point out the means which the ancients employed, whether they were the same or not as those used at present, or to acknowledge that their processes are unknown to us. Those who invariably follow this rule will sometimes discover that, in ancient times, men were able to accomplish the same objects and to produce the same effects, by means totally different from those used at present; and then the question will sometimes arise, Which of the means, the old or the new, are the cheapest, the most convenient, and the surest? This leads to technological problems, the solution of which, notwithstanding the great superiority we possess in those auxiliaries of the arts, natural history, chemistry, &c., is impossible. I have indulged in these observations, in mentioning the celebrated Caylus, because I well know that he has often erred in not attending to them. I acknowledge and respect the service of this eminent man; but I am convinced that by the boldness of his assertions he acquired greater confidence and more celebrity than he deserved.

The colours on the Etruscan vases have a resemblance indeed to those on our stone-ware, but it is also true that they might be produced by oxide of iron.

The substances used by the ancient potters can be determined only by the testimony of the ancients or by experiments; but the former is not to be found; and the latter have never been made, though they would not be difficult to any chemist who might choose to sacrifice a few vessels of that kind.

The question how the use of manganese was first found out, occurred even to Pliny; and his opinion on that subject deserves to be quoted, especially as it was long considered as true by Albertus Magnus, Caneparius, and many later writers. To understand it one must know that it was at first believed that the magnet, as it attracts iron, could attract other bodies also; and it was conjectured that other minerals might possess a similar property. Some imagined that they had found magnets for gold and silver. In the oldest times men had so erroneous an opinion of the art of glass-making, that they conceived that glass was obtained from sand, as metal from its ore; and Pliny thinks that they then conjectured that a magnet could attract glass as well as it does iron. Now as manganese, on account of its similarity, was considered to be a magnet, it was consequently subjected to experiments, which gave rise to the beneficial discovery that it renders glass colourless.

This use of it then has been retained through every age to the present time, and it is mentioned by all those authors who have written on glass-making. Avicenna[570 - Canon Medicinæ, lib. ii. tract. 2, cap. 470, de Magnete; and cap. 472, de Magnesia.] makes so complete a distinction between it and the magnet, that he treats of each in a particular section, though he says nothing of its employment in the glass-houses; but indeed as a physician he had no opportunity of doing so. Albertus Magnus[571 - In his book De Mineralibus, lib. ii. tract. 2, cap. 11.], however, who lived a century later, Roger Bacon, Basilius Valentine, Camillus Leonardus, Biringoccio, Mercati, Neri and many others have spoken in the plainest terms of this application.

It is seen by the words quoted from different authors, that the name, which as far as I know occurs first in Albertus Magnus, was written in a great many different ways: magnesia, magnosia, magnasia, manganensis, mangadesum, and in French magalaise, méganaise, magnese. One might imagine that it is derived from magnet, partly on account of the similarity of the two substances, and partly on account of its supposed power to attract glass. Besides, its other name sidera seems to have a reference to the Greek word for iron. Mercati, however, deduces the term from mangonizare, because potters besmear their wares with this mineral; but I suspect that the name was common before that use of the substance was known. It is to be observed that to this word various other significations have been given. Sometimes it seems to denote common iron-stone, and sometimes pyrites. What the gold-makers understood by it will be best discovered by consulting the works of their followers. Braunstein also, the German name, the earliest mention of which occurs perhaps in the writings of Basilius Valentine, denoted at first every kind of ferruginous earth employed by the potters for painting. Thus Schwenkfeld gave the name of Braunstein and Braunfarbe to a kind of bloodstone[572 - Stirpium et Fossilium Silesiæ Catalogus, Lipsiæ, 1600, 4to, p. 381.].

For a long time the manganese imported from Piedmont was in Germany accounted the best, and therefore was much sought after by the artists of Nuremberg. Afterwards, a kind brought from Perigord, a place in Guyenne, and named pierre de Périgueux, or lapis petracorius, was highly esteemed. Wallerius gives this as a peculiar species; and in my opinion he is right. Its distinguishing characters are, that it resembles a burnt coal or cinder; has a somewhat shining surface, and on the fracture appears to be finely striped and a little coloured. A piece which I have in my possession exhibits all these marks. This species has been mentioned by very few of the new mineralogists. Germany, however, for some centuries past has employed its own manganese, which even in the time of Biringoccio was sent as an article of commerce to Italy.

[The distinctness of the metal contained in the manganese of commerce from iron was first proved by the experiments of Pott in 1740, by Kaim and Winterl in 1770, and by Scheele and Bergman in 1774. Soon after this the metal itself was obtained in an isolated state by Gahn, who gave to it the name of magnesium, which term however was subsequently applied to the metal contained in magnesia, and the word manganese has been adopted to designate both the metal and the black ore. In addition to its application in the manufacture of glass, it is now very extensively used in the decomposition of common salt for the production of chlorine for bleaching. Some salts of the lower oxides of manganese have lately been used in calico-printing as a source of brown colours.]

PRINCE RUPERT’S DROPS. LACRYMÆ VITREÆ

It is more than probable that these drops, and the singular property which they possess, have been known at the glass-houses since time immemorial. All glass, when suddenly cooled, becomes brittle, and breaks on the least scratch. On this account, as far back as the history of the art can be traced, a cooling furnace was always constructed close to the fusing furnace. A drop of fused glass falling into water[573 - It is not always necessary that the water should be cold; these drops will be formed also in warm water, as well as in every other fluid, and even in melted wax. See Redi’s experiments in Miscellan. Naturæ Curios. anni secundi, 1671, p. 426. They succeed best with green glass, yet I have in my possession some of white glass, which in friability are not inferior to those of green.] might easily have given rise to the invention of these drops; at any rate this might have been the case in rubbing off what is called the navel[574 - The navel, in German nabel, is that piece of glass which remains adhering to the pipe when any article has been blown, and which the workman must rub off. These navels, however, are seldom in so fluid a state as to form drops.]. It is however certain that they were not known to experimental philosophers till the middle of the seventeenth century. Their withstanding great force applied at the thick end, and even blows; and on the other hand, bursting into the finest dust when the smallest fragment is broken off from the thin end, are properties so peculiar that they must excite the curiosity of philosophers, and induce them to examine these effects, especially at a time when mankind in general exert themselves with the greatest zeal to become better acquainted with the phænomena of natural bodies. On this account they have been noticed in almost every introduction to experimental philosophy. To determine the time then in which they were first made known, seems to be attended with little difficulty; but it still remains doubtful by whom and in what country.

It appears certain that the first experiments were made by philosophers with these drops in the year 1656. Monconys[575 - Journal des Voyages de M. Monconys, Lyon, 1666, 4to, ii. p. 162.], who travelled at that period, was present when such experiments were made at Paris, before a learned society, which assembled at the house of Mommor, the well-known patron of Gassendi; and the same year he saw similar experiments made by several scientific persons at London. He tells us expressly that Chanut, the Swedish resident, procured glass drops for the first Parisian experiments, and that these drops were brought from Holland.

It appears, therefore, that the first glass drops were made in Holland; yet Montanari, who was professor of mathematics at Bologna, says that the first were not made by the Dutch, but by the Swedes. The grounds, however, on which he rests his assertion are exceedingly weak. Because a Swedish resident procured those used for the first experiments, it does not follow that they were made at Swedish glass-houses, especially as it is positively said that they were brought from Holland. It was indeed stated so early as 1661, by Henry Regius or Van Roy, professor at Utrecht, that these glass drops came from Sweden; but may not this have been a lapse of memory, occasioned by the circumstance that the first drops used by the natural philosophers of Paris were procured by a Swedish resident.

Monconys, whose relation indeed bears evident marks of great haste as well as credulity, calls Chanut Résident de Suède, and seems to have considered him as a Swedish resident at the French court; an opinion in which he has been followed by many literary men. But Pierre Chanut was French resident at Stockholm, and at that time so well-known that Monconys could hardly be unacquainted with his quality. He was resident from the year 1645 to 1649; and he was afterwards envoy for adjusting the disputes between Sweden and Poland, which were to be settled at Lubec. He is often mentioned in Puffendorf’s book De Rebus Suecicis, and the printed account of his missions and negociations contain important materials towards a history of queen Christina, with whom he was a great favourite. He superintended the funeral of Descartes, who was interred with great honour. He was born in 1601; but with the time of his death I am unacquainted. He was celebrated as a man of great learning, and particularly an able mathematician; and it is neither improbable nor even impossible that he may have sent the first glass drops to Paris from Sweden; but why does Monconys add that they were brought from Holland?

It deserves to be mentioned, that about fifteen years before, that is in 1641, the first glass-houses were established in Sweden, and in all probability by Germans. It is possible that when the blowing of glass was first seen, glass drops may have excited an attention which they had not met with in Germany, where no one expected anything new in glass-houses, which were there common and had long been established. It can nevertheless be proved that they were known to our glass-blowers at a much earlier period.

In 1695, John Christian Schulenburg, subrector of the cathedral school of Bremen, published there a German Dissertation on glass drops and their properties, in which he says that he was informed by glass-makers worthy of credit, that these drops had been made more than seventy years before at the Mecklenburg glass-houses, that is to say, about the year 1625.

Samuel Reyher, professor at Kiel, says that Henry Sievers, teacher of mathematics in the gymnasium of Hamburg, had assured him that such glass drops were given to his father by a glass-maker so early as the year 1637; and that his father had exhibited them in a company of friends, who were much astonished at their effects. Reyher adds, that he himself had seen at Leyden, in 1656, the first of these glass drops, which had been made at Amsterdam, where he afterwards purchased some of the same kind; but in 1666 he procured for a very small sum a great many of them from the glass-houses in the neighbourhood of Kiel. It is worthy of remark, that Huet[576 - Commentarius de rebus ad eum pertinentibus, Lips. 1719.], who paid considerable attention to the history of inventions, says that the first glass drops, which he had seen also in the society held at the house of Mommor, were brought to France from Germany. According to Anthony Le Grand they came from Prussia[577 - Historia Naturalis. Edit. secunda, Londini 1680, 4to, p. 37.].

The first glass drops were brought to England by the well-known Prince Rupert, third son of the elector Palatine, Frederic V., and the princess Elizabeth, daughter of James I.; and experiments, described by Rupert Moray, were made with them in 1661 by command of his majesty. This is expressly stated by Merret[578 - In his Observations on Neri Ars Vitraria, Amstel. 1668, 12mo.]; and therefore what some English writers have supposed, that Prince Rupert himself was the inventor, is entirely erroneous[579 - This is said, for example, by Grainger in his Biographical History of England. London, 1769, vol. ii. part 2, p. 407.]. The services which he rendered to the useful arts were too great and too numerous to be either lessened or increased by such trifles.

I shall take this opportunity of remarking, that those small glasses hermetically sealed and containing a drop of water, which when placed on hot coals burst with a loud report, and therefore are called in German knallgläser, fulminating glasses, were known before 1665. Hooke speaks of them in his Micrographia[580 - This book was only once printed, but the title-page has the date 1667. See Biographia Britannica, iv. p. 2654.] printed in that year, and they were mentioned by Reyher in 1669, in his Dissertation already quoted. In Germany they are made chiefly by Nuremberg artists; one of the most celebrated of whom was Michael Sigismund Hack. He learnt the art of glass-blowing in England, and in 1672 returned to Nuremberg, where he was born in 1643[581 - Doppelmayer, p. 276.].

FIRE-ENGINES

The invention of pumps I shall leave to those who undertake to write the history of hydraulics, and here only remark that, on the testimony of Vitruvius[582 - Lib. x. cap. 12, p. 347. Compare lib. ix. cap. 9. p. 321.], it is in general ascribed to Ctesibius, on which account they are called machinæ Ctesibicæ; and that Ctesibius lived at Alexandria in the time of Ptolemy Philadelphus and Ptolemy Euergetes I., consequently two centuries before the Christian æra. My present object extends no further than to state what I know in regard to the question, At what time were these machines first employed for extinguishing fires?

For this purpose, however, it was necessary that the pump-work employed at first only for raising water should undergo some alteration. To use it for extinguishing fires, it was requisite that the water should be speedily driven from the upper aperture as high as possible; whereas for the first purpose, it is enough if the water be thrown out in sufficient quantity to be conveyed to the place of its destination. More additional parts necessary for extinguishing fires would then be an imperfection; as the power which gives the water a needless velocity might be employed with more advantage to raise a greater quantity of it.

In my opinion it is highly probable that Ctesibius had an idea of converting his pump into a fire-engine, for his scholar, Hero of Alexandria, speaks expressly of this use, and describes the construction of a forcing-pump with two cylinders[583 - In that book entitled Πνευματικὰ, or Spiritualia. It may be found Greek and Latin in Veterum Mathematicorum Opera, Parisiis 1693, fol. p. 180.]; but it is very doubtful whether this application of it soon became general, and whether this advantageous machine was known to the ancient Romans. What I have been able to learn on the subject is as follows.

Pliny the younger, after telling the emperor Trajan, in one of his letters, that the town of Nicomedia in Bithynia had been almost entirely destroyed by a fire, adds, that the devastation had been increased by a violent storm which took place at the time; by the laziness of the inhabitants, and by the want of machines or apparatus proper for extinguishing the flames[584 - Epist. 42, lib. x.]. The word sipho, which the author here uses, was certainly the fire-engine of Ctesibius; though some under this term understand only aqueducts, canals, and pipes for distributing water throughout the city. I will not deny that this word may have signified such pipes, particularly on account of a passage in Strabo[585 - Lib. v. edit. Almel. p. 360.], where he speaks of the subterranean conduits of Rome, and says that almost all the houses had cisterns, siphones, or water-pipes, and running streams. But Pliny at the same time mentions water-buckets, which may be considered as an appendage absolutely necessary to a fire-engine. It is also hardly possible to believe that a town, immediately situated on an arm of the sea, should be destitute of water[586 - Plin. lib. v. cap. ult.].

I can however produce from a contemporary writer, a strong proof that Pliny alluded here to a fire-engine, and I do not find that the passage has been before quoted. Apollodorus, the architect, who was employed by the emperor Trajan in constructing the celebrated bridge over the Danube, and erecting some large works at Rome, and who was put to death by his successor Adrian, out of revenge for a jeering answer which he received from him, as we are told by Dio Cassius, describes in the fragment of his book on warlike machines, how assistance may be given when the upper part of a building is on fire, and the machine called sipho is not at hand. In this case leathern bags filled with water are to be fastened to long pipes in such a manner, that by pressing the bags the water may be forced through the pipes to the place which is in flames[587 - Poliorcetica, p. 32, in Veterum Mathematicorum Opera.]. The sipho, therefore, was a machine by which water might be easily projected to a considerable height, to extinguish a place on fire that could not be reached by any other means.

That in the fourth century at least a fire-engine, properly so called, was understood under the term sipho, is fully proved by Hesychius, and also by Isidorus, who lived in the beginning of the seventh century[588 - Orig. xx. 6. Fire-engines are used in many towns to wash the windows in the upper stories, which cannot be taken out.]. As the latter remarks that such engines were employed in the East for extinguishing fires, there is reason to conclude that they were not then used in the west.

The question still remains, at what time this apparatus for extinguishing fires was introduced at Rome. From the numerous ordinances for preventing accidents by fire, and in regard to extinguishing fires, which occur in the Roman laws[589 - See Digest. i. tit. 15, where all persons are ordered to have water always ready in their houses. Also Digest. 47, tit. 9. Many things relating to this subject may be found in L. A. Hambergeri Opuscula, Jenæ et Lips. 1740, 8vo, p. 12; in the Dissertation de Incendiis. Further information respecting the police establishment of the Romans in regard to fires, is contained in two dissertations, entitled G. C. Marquarti de Cura Romanorum circa Incendia. Lips. 1689, 4to. And Ev. Ottonis Dissertat de Officio Præfecti Vigilum circa Incendia. Ultrajecti 1733.], there is reason to conjecture that this capital was not unprovided with those useful implements and machines, of the want of which in a provincial town Pliny complains, and which he himself had supplied. This conjecture, however, I am not able to prove; and instances both in ancient and modern times show that the good police establishments of small towns are not always to be found in capitals. Antioch and several other towns were provided with lanterns, which were wanting even in the proud Rome. But what excites some doubt is, that fire-engines are never mentioned in the numerous accounts given of the fires which took place in that city. At present it is impossible to speak of a misfortune of this kind without stating whether a sufficient number of engines were assembled, and what they effected, as Pliny has not failed to do in his short account of the fire at Nicomedia.

One passage, however, in Ulpian is commonly quoted as a proof that in his time there were fire-engines at Rome. Where he enumerates those things which ought to belong to a house when sold, he mentions, besides other articles used for extinguishing fires, siphones[590 - Digest. xxxiii. 7, 18. Dier. Genial. v. 24.]. But if this word means here fire-engines, the passage seems to prove too much; for it must then be admitted that each house had a fire-engine of its own. These implements therefore must have been small hand-engines, such as are kept in many houses at present; and in that case the passage cannot be adduced as a proof of public engines, such as Pliny regrets the want of at Nicomedia. But it is much more probable that Ulpian alludes only to those siphones which, according to the account of Strabo, were to be found in every house at Rome; that is, pipes which conveyed water to it for domestic purposes.

From the total want of fire-engines, or the imperfect manner in which they were constructed, what Seneca says must have been true, namely, that the height of the houses at Rome rendered it impossible to extinguish them when on fire[591 - Controvers. 9, libri ii.]. That the buildings there were exceedingly high, and the lanes, the bridges and even the principal streets remarkably narrow, is well-known[592 - In Germany also the roads and the distance between the ruts made by cart-wheels were in old times very narrow. Some years ago, when the new tile-kiln was built before the Geismar gate at Göttingen, there was found at a great depth, a proof of its antiquity, a street or road which had formerly proceeded to the city with so small a space marked out by carriage-wheels, that one like it is not to be seen in Germany.]. It is supposed by Archenholz and others, that the houses at Rome were built of such a height on account of the great heat in that warm climate; but the chief reason was undoubtedly that assigned by Vitruvius[593 - Lib. ii. cap. 8.], which still produces a like effect. For want of room on the earth, the buildings were extended towards the heavens; so that at last the greatest height of an edifice was fixed by law at seventy, and afterwards at sixty feet. In Hamburg, at present, where ground is dear and daily becoming more valuable, the greater part of the houses are little less than sixty feet in height; a few even are seventy; and that it is thereby rendered difficult, if not impossible, notwithstanding the perfection of the German engines, to extinguish fires, is proved by the melancholy instance of Gera, where the houses are now built lower. With Neubert’s engine, which was tried at Hamburg in 1769, eight firemen threw eleven and a half cubic feet of water to the height of sixty-two or sixty-three feet.

In the East engines were employed not only to extinguish but to produce fires. The Greek fire, invented by Callinicus, an architect of Heliopolis, a city afterwards named Balbec, in the year 678, the use of which was continued in the East till 1291[594 - Hanovii Disquisitiones. Gedani 1750, 4to, p. 65.], and which was certainly liquid[595 - Annæ Comnenæ Alexiad. lib. 16. p. 385; πῦρ ὑγρόν.], was employed in many different ways; but chiefly on board ship, being thrown from large fire-engines on the ships of the enemy. Sometimes this fire was kindled in particular vessels, which might be called fire-ships, and which were introduced among a hostile fleet; sometimes it was put into jars and other vessels, which were thrown at the enemy by means of projectile machines[596 - A projectile machine of this kind is mentioned by Joinville, p. 39.], and sometimes it was squirted by the soldiers from hand-engines; or, as appears, blown through pipes. But the machines with which this fire was discharged from the fore-part of ships, could not have been either hand-engines or such blow-pipes. They were constructed of copper and iron, and the extremity of them sometimes resembled the open mouth and jaws of a lion or other animal; they were painted and even gilded, and it appears that they were capable of projecting the fire to a great distance[597 - See the passage of Anna Comnena quoted by Hanov. p. 335.]. These machines by ancient writers are expressly called spouting-engines. John Cameniata, speaking of the siege of his native city, Thessalonica, which was taken by the Saracens in the year 904, says that the enemy threw fire into the wooden works of the besieged, which was blown into them by means of tubes, and thrown from other vessels[598 - In Leonis Allatii Σύμμικτα. Colon. 1653, 8vo, p. 239.]. This passage, which I do not find quoted in any of the works that treat on the Greek fire, proves that the Greeks in the beginning of the tenth century were no longer the only people acquainted with the art of preparing this fire, the precursor of our gunpowder. The emperor Leo, who about the same period wrote his art of war, recommends such engines, with a metal covering, to be constructed in the fore-part of ships[599 - Cap. 19, § 6, p. 322.], and he twice afterwards mentions engines for throwing out Greek fire[600 - Pp. 344, 346.]. In the East one may easily have conceived the idea of loading some kind of pump with the Greek fire; as the use of a forcing-pump for extinguishing fires was long known there before the invention of Callinicus.

At what time the towns in Germany were first furnished with fire-engines I am not able to determine. In my opinion they had regulations in regard to fires much earlier than engines; and the former do not seem to be older than the first half of the sixteenth century. The oldest respecting the city of Frankfort-on-the-Maine, with which I am acquainted, is of the year 1460. The first general ordinance respecting fires in Saxony was issued by Duke George in 1521. The first for the city of Dresden, which extended also to the whole country, was dated 1529. In many towns, the first regulations made by public authority for preventing fires will no doubt be found in the general regulations in regard to building, which seem to be somewhat older than the particular ordinances concerning fires. At Augsburg an express regulation in regard to building was drawn up and made publicly known as early as 1447. In turning over old chronicles, it is remarked that great fires began to occur less frequently in the sixteenth century; and this is undoubtedly to be ascribed to the improved mode of building[601 - Thus in the year 1466 straw thatch, and in 1474 the use of shingles were forbidden at Frankfort. – Lersner, ii. p. 22.], the precautions enjoined by governments to prevent fires, and the introduction of apparatus for extinguishing them. But by the invention of fire-engines, every thing in this respect was so much changed, that a complete revision of the regulations in regard to the extinguishing of fires became necessary; and therefore the first mention of town fire-engines will in all probability be found in the new fire ordinances of the sixteenth and following century.

It has been remarked by Von Stetten, that in the building accounts of the city of Augsburg, fire-engines are first mentioned in the year 1518. They are called there instruments for fires, water syringes useful at fires; and these names seem to announce that the machine was then in its infancy. At that time they were made by a goldsmith at Friedberg, named Anthony Blatner, who the same year became a citizen of Augsburg. From the account added, – that the wheels and levers were constructed by a wheelwright, and from the greatness of the expense, – there is reason to conclude that these were not small, simple hand-engines, but large and complex machines. In that respectable dictionary entitled Maaler’s Teutschsprach, Zurich, 1561, I find fire-hooks and fire-ladders, but no instrument similar to a fire-engine.

In the year 1657, the well-known jesuit Caspar Schott was struck with admiration on seeing at Nuremberg a fire-engine, which had been made there by John Hautsch. It stood on a sledge, ten feet long and four feet broad. The water-cistern was eight feet in length, four in height, and two in width. It was moved by twenty-eight men, and forced a stream of water an inch in diameter to the height of eighty feet[602 - Doppelmayer says that the water was driven to the height of a hundred feet.]; consequently over the houses. The machine was drawn by two horses. Hautsch distributed throughout Germany an engraving of it, with an offer of constructing similar ones at a moderate price, and teaching the use of them; but he refused to show the internal construction of it to Schott, who however readily conjectured it. From what he says of it, one may easily perceive that the cylinders did not stand in a perpendicular direction, but lay horizontally in a box, so that the pistons moved horizontally, and not vertically, as at present. Upright cylinders therefore seem to belong to the more modern improvements. Schott adds, that this was not a new invention, as there were such engines in other towns; and he himself forty years before, and consequently in 1617, had seen one, but much smaller, in his native city. He was born, as is well-known, in 1608, at Königshofen, not far from Würzburg. George Hautsch also, son of the above artist, constructed similar engines, and perhaps with improvements, for Wagenseil[603 - Doppelmayer, p. 303.] and others have ascribed to him the invention.

The first regulations at Paris respecting fires, as far as is known, were made to restrain incendiaries, who in the fourteenth century, under the name of Boutefoux, occasioned great devastation, not only in the capital, but in the provinces. This city appears to have obtained fire-engines for the first time in the year 1699; at any rate the king at that period gave an exclusive right to Dumourier Duperrier to construct those machines called pompes portatives; and he was engaged at a certain salary to keep in repair seventeen of them, purchased for Paris, and to procure and to pay the necessary workmen. In the year 1722 the number of these engines was increased to thirty, which were distributed in different quarters of the city; and at that time the contractors received annually 20,000 livres. The city, however, besides these thirty royal engines, had a great many others which belonged to the Hotel de Ville, and with which the Sieur Duperrier had nothing to do[604 - Contin. du Traite de la Police, par De la Mare, p. 137.].

<< 1 ... 8 9 10 11 12 13 14 15 16 ... 81 >>
На страницу:
12 из 81

Другие электронные книги автора Johann Beckmann