Таким образом, выясняется, что стратифицированная по плотности пресная вода не способна передавать теплоту в сторону ледяного покрова ни конвективной, ни кондуктивной теплопроводностью, то есть не может участвовать в теплообмене со льдом и с атмосферой иначе, чем претерпевая фазовые превращения. Тепловой поток через лёд в этом случае заполняется лишь теплотой кристаллизации и какой-то незначительной величиной теплоты, передаваемой при охлаждении самого льда. Это подтверждается натурными наблюдениями зимнего режима озер, из которых следует, что температурный профиль в них ниже льда в течение всей зимы чаще всего сохраняется неизменным.
Иначе, при охлаждении стратифицируется морская вода. Утяжеленная солями (при их концентрации более 24,7‰) увеличенную плотность вода приобретает параллельно с охлаждением до температуры замерзания (минус 1,3 °C и ниже). Причем вода с большей соленостью, имея большую плотность, может удерживаться у дна даже будучи несколько нагретой выше температуры замерзания. Образуется так называемый галоклин. Вода с одинаковой соленостью, участвуя в конвекции, сопровождающейся передачей тепла с глубин моря, не может замерзать, пока вся не охладится до температуры, близкой к температуре замерзания. Толщина этого слоя воды, называемого пикноклином, составляет десятки и даже сотни метров. Даже при малом нагреве выше температур замерзания это обеспечивает водной массе запас тепла, долго или полностью компенсирующий потерю его с поверхности воды. Поэтому моря замерзают всегда позднее пресных водоёмов или вовсе не замерзают. В. Ф. Захаров (1981) показал, что даже на Северном полюсе океан мог бы не замерзать, если бы поверхностный слой воды в нём не был бы существенно опреснен и не подстилался бы сравнительно близко расположенным (на глубине около 50 м) галоклином.
Из охарактеризованных условий, предшествующих замерзанию любого водоёма, отнюдь не следует, что после замерзания, он не может терять в атмосферу какое-то количество вновь приобретенного тепла через ледяной покров. Но вероятность такой теплопередачи не подтверждается наблюдениями в Северном Ледовитом океане.
Тем не менее, живуче и противоположное мнение о том, что через лёд Арктического бассейна всё же может теряться значительное количество тепла, не участвующего в фазовом превращении.
Это мнение возродилось с той поры, когда было обнаружено, что в Северный Ледовитый океан постоянно поступает огромное количество тепла с притоком вод из Атлантического океана. Надо было найти, как и куда теряется это тепло. В конечном счете возобладало представление о возможности потери тепла через ледяной покров. Насколько оно верно мы рассмотрим далее.
Среди физических свойств воды для суждений о теплообмене водоёмов с окружающей средой, необходимо отметить ее большую удельную теплоёмкость. Исключая жидкие водород и аммиак, удельная теплоёмкость воды оказывается выше, чем у всех остальных известных нам веществ. Это свойство обеспечивает возможность аккумулирования и последующего перераспределения гидросферой огромных запасов тепловой энергии, получаемых Землей от Солнца, можно, например, отметить, что, несмотря на несравнимо больший объём атмосферы Земли, запас тепла в Мировом океане превышает запас его в атмосфере в тысячи раз. Поэтому тепловое влияние атмосферы на океан в общем случае всегда оказывается намного менее значительным, чем влияние океана на атмосферу.
Но атмосфера, не имея столь больших «запасов» тепла, весьма активно перераспределяет его по поверхности земного шара как постоянно поступающее, так и теряющееся в космос, количество за счет очень большой теплоёмкости парообразования и обратных ему процессов конденсации и сублимации. В среднем на всей Земле постоянный расход тепла на испарение составляет 83 % от усваиваемой радиации. Столько же его высвобождается в атмосфере при конденсации. При этом 35 % всего внешнего теплооборота Земли составляет теплота фазовых превращений льда в атмосфере. Такое связывающее теплообмен поверхности Земли с космическим пространством действие атмосферы наблюдается в современную эпоху, когда средняя величина испарения составляет 113 см
в год. Когда же испарение и конденсация сокращаются или увеличиваются, то соответственно уменьшается или увеличивается тепловое посредничество атмосферы в теплообмене земной поверхности с космосом. При этом уменьшение испарения приводит к угасанию парникового эффекта атмосферы, увеличивается континентальность климата, происходит общее охлаждение Земли. Однако водные поверхности, доведенные до замерзания, резко ограничивают дальнейшую потерю тепла, причем не только фактом образования ледяного покрова, но и, как увидим далее, под влиянием некоторых важных особенностей его намерзания и таяния.
Пока же заметим, что большая удельная тепловая ёмкость фазового перехода «вода – лед – вода» является регулятором не только ежегодного теплообмена Земли с окружающей средой, но и ведущим буферным регулятором многолетнего и даже многовекового теплового состояния её биосферы.
Сейчас модно стало говорить о возможности перегрева поверхности Земли громадным количеством тепла, вырабатываемого человечеством. Как следствие перегрева называется ускорение таяния ледников и опасное повышение уровня Мирового океана. Интересно, как могут противостоять этому антропогенному фактору массы льда?
В состоянии оледенения, главным образом в массивах гигантских покровных ледников Антарктиды и Гренландии, находится около 27 млн. км
воды, или 2 % всего объема Мирового океана. Средняя толщина этой массы льда составляет 1600 м.
Сжигая все виды топлива во всех топках и двигателях, человек сейчас высвобождает сверх естественного прихода тепла от Солнца более 2 ? 10
кДж за год. Если все это количество тепла полностью направить только на таяние ледников, то за год они могут стаять лишь на 4 см, вызвав подъём уровня Мирового океана всего на 1,8 мм. Фактически вероятное воздействие этого тепла окажется, по меньшей мере, в 30 раз менее заметным и его последствия не могут быть зафиксированы наблюдениями даже в случае, если тепла будет вырабатываться на порядок больше.
Более ощутимое тепловое воздействие может оказать непреднамеренное затемнение поверхности ледников промышленно – энергетическими выбросами в атмосферу, уменьшающими их альбедо. Поэтому сохранение чистоты атмосферы и снежно-ледниковых покровов, по-видимому, является первостепенной профилактической мерой против возможных нежелательных затоплений суши и вообще модификаций климата через посредство ледяных поверхностей.
Глава 3. Где еще мы ошибаемся?
Определяйте значение слов, и вы избавите свет от половины его заблуждений.
А. С. Пушкин
Неопределенности в объяснениях физических явлений и непреднамеренные ошибки, как испорченный компас, способны увести сознание с правильного пути к истине. От них особенно важно освободиться, когда мысль направляется по пути новых знаний. Старый багаж ошибок способен помешать стыковке всего ценного, что уже хорошо изучено с тем, что появляется вновь на пути развития наших представлений о природе. Уточнять прижившиеся толкования и исправлять чужие ошибки – дело ответственное и неблагодарное, но мы отважимся на него, поскольку видим в этом насущную необходимость.
3.1. Коротко о формах теплообмена
Начнем с некоторых частных, но необходимых пояснений к элементарным определениям термодинамики.
Под термином теплообмен чаще всего толкуется самопроизвольный процесс передачи тепловой энергии от более нагретого тела к менее нагретому.
К сожалению такое толкование страдает неопределенностью, хотя бы уже потому, что под термином «нагрев» можно понимать разные тепловые явления: либо изменения температуры тел, либо изменения их энтальпии (теплосодержания), либо то и другое вместе взятое. Но изменения энтальпии, например, при замене воды льдом, имеющим меньшую энтальпию, или наоборот, могут не вызываться различиями температуры нагрева и даже протеканием самого теплообмена в том смысле, в каком он определяется выше.
Поскольку от подобных неопределенностей начинается цепная реакция путаниц и новых неопределенностей, условимся понимать под термином «теплообмен» просто всякую передачу теплоты от одной вещественной среды к другой. Отметим важнейшие понятия о формах обмена тепловой энергией между телами.
Теплопроводностью называется теплообмен в неравномерно нагретом теле (среде), имеющей атомно-молекулярный характер, не связанный с движением самого тела, чтобы подчеркнуть суть этого процесса, его часто называют молекулярной теплопроводностью, что не относится к металлам, поскольку в них перенос энергии в основном осуществляется электронами проводимости. Например, принимается, что перенос тепла во льду осуществляется за счет связанных колебаний частиц, образующих кристаллическую решетку. Чтобы подчеркнуть характер происходящей при этом передачи тепла, процесс часто называют кондуктивной теплопроводностью или кондуктивным теплообменом.
Обязательным условием теплопроводности является наличие вещественной среды и непрерывной разности температуры (температурного градиента) в ней, то есть отсутствие изотермичности. Поэтому вещественная среда с одинаковой температурой не может осуществлять теплообмен, пока в ней не сформировался градиент температуры, о чём иногда забывается.
Конвективным теплообменом называется перенос теплоты в неравномерно нагретой среде жидкости или газа путём движения самой среды. В природе конвективный теплообмен чаще всего возбуждается действием силы тяготения из-за неравномерного нагрева и, следовательно, возникающих, в силу этого различий в плотности участков подвижной среды, находящейся на разных уровнях. Такой теплообмен называют еще естественной (свободной) конвекцией, характеризующейся перемещением среды по вертикали. Конвекция водной массы, сопровождающаяся ее плотностной стратификацией, имеет большое значение в формировании условий замерзания и зимней жизни водоёмов.
Адвективным теплообменом (адвекцией) называют горизонтальный перенос атмосферы, а вместе с ней и тепловой энергии. В последнее время этот термин часто стал распространяться и на случай переноса тепла с горизонтальными перемещениями воды и льда, например, морскими течениями. Это сугубо географический термин, поскольку в технике такой перенос принято называть вынужденной конвекцией.
Лучистым теплообменом называется перенос тепловой энергии между телами вследствие испускания лучей или электромагнитного излучения (радиации), что может происходить и даже лучше происходит при отсутствии промежуточной среды. Практически вся тепловая энергия, поступающая на Землю от Солнца, переносится лучистым теплообменом в виде коротковолновой радиации. Столько же Земля теряет тепла в космос путём длинноволнового излучения.
Важно заметить, что скорость распространения лучей не зависит от их длины и всегда равна скорости света. Лучи не могут нигде задерживаться иначе, чем путём поглощения одновременно нагревающейся материальной средой, которой они достигают и через которую проникают, или путём превращения в другую форму энергии. Световая энергия поглощенных лучей, переходящая в другие различные формы энергии среды, частично или полностью переизлучается средой на частотах, отличных от частоты поглощенного излучения. Недостаточное внимание к особенностям трансформации лучистой энергии нередко как увидим далее, порождает неясности толкования её динамики в атмосфере.
Лёд и снег играют большую роль в регулировании лучистого теплообмена Земли с окружающим космическим пространством в силу их значительных отражательных способностей.
Обратим внимание на мало известный в физической географии теплообмен при изотермическом изменении энтальпии масс. Этот теплообмен, в результате которого изменение количества теплоты (энтальпии) в определенной массе вещественной среды, не вызывается разностью температуры и не сопровождается ею. Чаще всего он происходит после независимо свершившегося фазового превращения в среде и вследствие переноса масс разного агрегатного состояния. Примером такого теплообмена может служить случай простой замены в водоёме массы льда равнозначной массой воды. В Арктическом бассейне такие явления постоянно происходят вследствие притока атлантических вод и обратно направленного выноса дрейфующих льдов в Атлантику. Невнимание к факту существования такого вида теплообмена породило целый ряд неясностей в описании процессов теплообмена и тепловых балансов полярных водоёмов, что нам еще предстоит далее обсудить особо.
В природе несколько видов теплообмена, действующих одновременно, дополняя один другим или, наоборот, сдерживая теплообмен одной формы другой. Например, на водоёме лёд намерзает за счет кондуктивного отвода теплоты кристаллизации в атмосферу и одновременно может дрейфовать, то есть участвовать в адвекции. Намерзая, под воздействием холодной атмосферы, он одновременно может подтаивать под действием проникающей солнечной радиации, нагревающей воду и конвективно передающей теплоту обратно льду и так далее. Выделить конкретную величину теплового влияния той или иной формы теплообмена не всегда возможно, но четкое представление о физических условиях таких процессов намного упрощает эту задачу.
3.2. «Туман» вокруг истины
Нет смысла подробно объяснять, что такое фазовый переход, поскольку достаточно твердые представления об этом даются уже в общеобразовательной школе. Но обратим внимание на нередкие случаи непреднамеренного искажения этих представлений, порождающих паралогизмы и целый ряд вытекающих из них сложностей в изучении и описании тепловых явлений в гидросфере.
Фазовым переходом первого рода называется термодинамический процесс, при котором энтальпия, плотность и другие характеристики вещественной среды изменяются скачком. Для осуществления такого перехода необходимо подводить или отводить теплоту, называемую теплотой фазового перехода и измеряемую скачком энтальпии при фазовом переходе в условиях постоянства температуры и давления.
Теплота фазового превращения для уточнения направленности перехода, например, «вода – лёд» называется либо теплотой кристаллизации, то есть количеством тепла, отводимым от воды при затвердении и соответствующем уменьшении её энтальпии, либо теплотой плавления – количеством тепла, подводимым для перехода льда в воду при соответствующем увеличении энтальпии. Для других случаев фазового перехода первого рода применяются другие термины, например, теплота испарения, теплота сублимации и так далее.
Из справочных источников ныне исчезает менее строгий термин «скрытая теплота», характеризующий изменение энтальпии при фазовом переходе. Недостатком толкования старого термина была не столько его некоторая неопределенность, сколько возможность нечеткого толкования следовавших за ним пояснений, давших пищу для заблуждений в понимании теплообмена при фазовом переходе.
Вот типичный пример прежнего толкования:
«Скрытая теплота – количество теплоты, поглощаемого телом или системой тел при фазовых превращениях (плавлении, испарении и тому подобное) без изменения температуры тела и выделяемое телом при обратном фазовом переходе (отвердении, конденсации и т. д.)» (БСЭ, изд. 2-е, т. 39, 1956). Здесь причастия «поглощаемое» и «выделяемое» как бы наделяют фазовый переход мистической способностью поглощать «всасывать» или «выделять», как независимый источник, теплоту. Старый термин, вместе с его неудачным дополнением, отжил, а следы непреднамеренно порожденной двусмысленности дают о себе знать.
В одной из работ доктора наук профессора читаем: «Процессы охлаждения воды и выделения тепла при кристаллизации льда взаимосвязаны». Не сложно заметить, что «охлаждение» и «выделение» тепла – это одно и то же. Здесь отнюдь не два самостоятельных процесса, между которыми надо искать взаимосвязь. Но когда допущено раздвоение (дуализм), можно не удивляться далее вытекающему из него курьезному рассуждению: «Если бы эти процессы не имели связи между собой, то в период замерзания вода в реке настолько переохладилась, что полностью превратилась бы в лёд, или наоборот, при образовании льда выделялось бы столько тепла, что весь процесс льдообразования прекратился бы вовсе, так как температура воды была бы значительно выше 0°».
Рис. 3. Типичный ход температуры воздуха (пунктирная линия) и воды (кривая) перед образованием на ней льда. Временное падение температуры воды ниже 0 °C вызывается её переохлаждением из-за отсутствия ядер кристаллизации.
В более известной, неоднократно переизданной работе В. В. Шулейкина (1962, с.70) можно прочесть: «При таянии каждого грамма льда поглощается, как известно, около 80 кал, которые отнимаются от окружающей воды». Это уже грубая ошибка – от воды, покрытой льдом, теплота таяния отниматься не может, поскольку в присутствии льда вода уже предельно охлаждена и, далее отдавая тепло, может только замерзать. В этой же работе, как итог всех рассуждений, показан тепловой баланс «Ледовитого» моря, в котором теплота кристаллизации значится в приходе тепла морю, а теплота плавления – в расходе. Здесь уже все поставлено с ног на голову. Я не умолчал фамилию автора этой широко известной работы, безусловно талантливого и крупного ученого, академика, чтобы показать, как за спиной его авторитета в науку проникла ошибка, далеко уводящая от истины. К слову сказать, мои ранние попытки указать на эту ошибку всегда оборачивались против меня же. Зато публиковались работы, призванные как бы развеять туман над неясностями физики фазовых превращений. Но туман ещё более сгущался.
В работе тоже доктора наук профессора, адресованной специалистам и студентам, для этого используется известный график типичного хода температуры начала образования льда в воде дополненный нами (рис. 3).
Он объясняет отклонение графика температуры воды вверх тем, что «с возрастанием интенсивности кристаллизации увеличивается количество выделяющегося в воду тепла…». Как видно, здесь опять кристаллизация становится источником тепла для воды. Но очевидно, что теплота кристаллизации, как всякая теплота, при неоднородном поле температуры может передаваться (отводиться, изыматься) только в среду, имеющую температуру ниже температуры замерзания воды. Для замерзающего водоёма такой средой является атмосфера и только ею и в ее сторону вынужденно изымается теплота кристаллизации.
Что касается изгиба на графике температуры начала замерзания, то он вызывается некоторым переохлаждением воды из-за недостатка ядер кристаллизации – условия, необходимого для начала замерзания. Как только ядро кристаллизации попадает в такую воду, её переохлаждение мгновенно реализуется на образование соответствующего дополнительного количества льда уже вне связи с продолжающейся потерей тепла водой в атмосферу. Такой процесс скоро и неизбежно вызывает повышение температуры вновь образующегося льда до температуры нормального замерзания воды, что и отражает график. Количество образующегося таким путём льда легко определяется, если известна температура, до которой переохлаждалась вода.
Очевидно, что теплота кристаллизации не может выделятся в воду, равно как и теплота плавления не может отвлекаться из воды в присутствии льда. Когда это положение четко усвоено, то становится понятной простая зависимость, что на водоёмах количество теряемой и усваиваемой теплоты фазовых переходов прямо соответствует количеству намерзающего или стаиваемого льда.
Покажем, как далеко от истины уводит ученых нечеткое представление об этих положениях. Так, в работе А. А. Лебедева и Н. С. Уралова (1981), озаглавленной «Результаты оценки тепла фазовых превращений морского льда в северном полушарии Земли», уже настораживает заглавие – зачем оценивать особо теплоту фазовых превращений, если уже производились многочисленные оценки, в том числе и указанными авторами, объёмов намерзания льда в северном полушарии? Не пустая ли это работа?
С первых строк в работе обнаруживаются последствия прижившихся ошибок. И здесь теплота кристаллизации относится в приходную часть теплового баланса океана, а теплота плавления – в расходную, хотя очевидно, что с потерей теплоты кристаллизации энтальпия океана уменьшается, а при усвоении теплоты плавления увеличивается. Авторы делают заключение, что при образовании и таянии льда в Арктическом бассейне и его морях усваивается и теряется одинаковое количество теплоты кристаллизации и теплоты плавления. Но и это заключение неверно, поскольку давно и надежно установлено, что из Арктического бассейна лёд постоянно выносится, а значит здесь его ежегодно намерзает больше, чем тает. Соответственно и разнонаправленные обмены теплотой фазовых переходов вряд ли могут быть равными. В работе показывается, что с выносом льда из Арктического бассейна якобы теряется значительное количество тепла. Но ведь энтальпия единицы массы льда меньше, чем энтальпия такой же массы воды, а, следовательно, вынос льда из бассейна приводит к увеличению его энтальпии (к приходу тепла), что правильно и принималось ранее в расчетах.
Таким образом, представление о теплообмене на главной замерзающей акватории Земли – Арктическом бассейне – оказалось основательно запутанным. И чтобы нам далее легче было понять некоторые вновь обнаруженные особенности фазовых превращений, полезно помнить об ошибках наших предшественников.