Оценить:
 Рейтинг: 0

Сборник лабораторных работ по цифровым устройствам. Для колледжей

Год написания книги
2018
<< 1 ... 3 4 5 6 7 8 9 10 11 >>
На страницу:
7 из 11
Настройки чтения
Размер шрифта
Высота строк
Поля

5. Показать преподавателю работу выбранного магистрального передатчика данной микросхемы для двух комбинаций входных сигналов (двух кодов), которые определяются по табл.3. Для этого в левой колонке генератора сигналов следует использовать две строки с адресами 0000 и 0001.

6. Далее для этих же комбинаций входных сигналов показать преподавателю работу выбранного магистрального передатчика при переходе микросхемы в Z-состояние. На входах 1—4 могут быть любые сигналы, но должны быть и нули, и единицы. Использовать следующие две строки в левой колонке генератора сигналов с адресами 0002 и 0003.

7. Собрать схему (рис.3) для исследования работы мажоритарного элемента.

8. Показать преподавателю работу элемента для двух входных кодов, указанных в табл.1. Для этого в левой колонке генератора сигналов следует использовать две строки с адресами 0000 и 0001.

9. Сравнить полученные результаты с выполненным предварительным заданием и сделать вывод.

10. Еще в одной строке с адресом 0002 показать и объяснить преподавателю вариант, когда элемент срабатывать не будет (на входах 1—3 могут быть любые сигналы, но должны включать и нули, и единицы).

ВЫПОЛНЕНИЕ РАБОТЫ

Предположим для примера, что мы сидим за компьютером №3.

Выполнение предварительного задания

1. Чертим микросхему КР1533ЛП5 (рис.4).

2. Составляем таблицу истинности элемента «исключающее 2ИЛИ» (табл.4).

3. Чертим микросхему КР1533АП4 (рис.5).

4. Чертим схему мажоритарного элемента «2 из 3» (рис.6).

Здесь Е (enable) – разрешающий вход. Элемент будет нормально работать только при подаче на вход Е разрешающего сигнала 0. При Е = 1 элемент работать не будет и на выходе Y будет всегда сигнал 0 при любых сигналах на входах.

5. Составим таблицу истинности такого элемента (табл.5).

6. Выполняем анализ работы этой схемы в статическом режиме (рис.7) при наличии разрешения для двух входных кодов по табл.1: для первого кода – красным цветом, для второго кода – синим.

Выполнение лабораторной работы

1. Запускаем программу исследования работы элементов и устройств электроники и микроэлектроники «Elektroniks Workbehch».

2. Собираем схему (рис.8) для исследования работы микросхемы SN74ALS86 фирмы «Texas Instruments Inc.» (российский аналог – микросхема КР1533ЛП5), содержащей 4 элемента «исключающее 2ИЛИ». Согласно табл.2 будем использовать 4-й элемент данной микросхемы (показан красным цветом на рис.4).

3. Разворачиваем панель и настраиваем генератор сигналов аналогично пунктам 14—23 лабораторной работы №3.

4. Выполняем исследование работы элемента «исключающее2ИЛИ» данной микросхемы аналогично пунктам 24—31 лабораторной работы №3. Особо обратим внимание на последнюю 4-ю строку таблицы истинности (в табл.4 показана красным цветом): при нажатии на клавишу Step четвертый раз (рис.9) видим, что при наличии на входах сигналов 1 и 1 на выходе формируется сигнал 0, в отличие от результата операции 2ИЛИ.

5. Собрать схему (рис.2) для исследования работы микросхемы SN74ALS241А фирмы «Texas Instruments Inc.» (российский аналог – микросхема КР1533АП4). Будем использовать 1-й передатчик данной микросхемы согласно табл.3 (показан красным цветом на рис.5).

6. Покажем преподавателю работу 1-го магистрального передатчика данной микросхемы для передачи двух входных кодов 0111 и 1001 (согласно табл.3) на выход, а также для этих же входных кодов при переходе микросхемы в Z-состояние.

7. Разворачиваем панель генератора сигналов (рис.10).

8. Так как следует показать работу передатчика в четырех случаях, то для этого в левой колонке генератора сигналов используем 4 строки с адресами 0000, 0001, 0002 и 0003.Следовательно, последний нужный адрес 0003 указываем в окошке Final генератора сигналов (рис.10).

9. Устанавливаем курсор на первую строку левой колонки (рис.10).

10. В окошке Binary печатаем (рис.10) 4 входных сигнала первого кода из табл.3: 0111 (0111

=7

). Перед ними должен быть сигнал 0 (0

 = 0000

 = 0

), который поступает на вход EZ 1-го передатчика микросхемы и разрешает входным сигналам проходить на выходы.

11. Устанавливаем курсор на вторую строку левой колонки.

12. В окошке Binary печатаем 4 входных сигнала второго кода из табл.3: 1001 (1001

 = 9

). Перед ними снова должен быть сигнал 0 (0

 = 0000

 = 0

), который поступает на вход EZ 1-го передатчика и разрешает входным сигналам проходить на выходы.

13. Устанавливаем курсор на третью строку левой колонки.

14. В окошке Binary печатаем 4 входных сигнала первого кода: 0111 (0111

= 7

). Перед ними должен быть сигнал 1 (1

 = 0001

 = 1

), который переводит микросхему в Z-состояние.

15. Устанавливаем курсор на 4-ю строку левой колонки.

16. В окошке Binary печатаем 4 входных сигнала второго кода: 1001 (1001

 = 9

). Перед ними снова должен быть сигнал 1 (1
<< 1 ... 3 4 5 6 7 8 9 10 11 >>
На страницу:
7 из 11