Оценить:
 Рейтинг: 2.6

Приборостроение

Серия
Год написания книги
2009
<< 1 2 3 4 5 6 >>
На страницу:
2 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля
то есть в любом случае произойдет событие А или событие Д.

Событие называется независимым, если его появление не зависит от появления любого другого события. Иначе событие называется зависимым.

4. Условная и полная вероятности

Условная вероятность – такая вероятность события А, которая вычислена при предположении, что событие Д произошло: при этом события А и В являются зависимыми, они обозначаются как Р(А /В) или Р(А)В.

Совместное (одновременное или последовательное) появление нескольких независимых событий А, В, С, Fназывается сложным событием. Вероятность сложного события определяется путем умножения вероятностей составляющих его событий.

Р (АиВиСи…иF)= Р(А) ? Р(В)

? Р (С

) ?… ? Р(F)

.

В случае независимости событий (8) выглядит следующим образом.

Р (АиВиСи…иF)= Р (А) ? Р (В) ? Р (С) ? … ? Р (f).

Формула, которую привели выше, справедлива, если события А или В или С несовместимы. В случае их совместимости формула выглядит следующим образом:

Р(А ? В ? С)=Р(А) + Р(В) + Р(С) – Р(АиВиС).

Р (АиВиС)= Р (А) ? Р(В) ? Р (С)

С учетом этого получим

Р (А ? В ? С)=Р (А) + Р (В) + Р (С) – Р (А) ? Р (В) ? Р (С).

Теперь, после некоторого ознакомления с арифметическими операциями над вероятностями, можно привести формулу полной вероятности

В формуле предполагается, что событие А может произойти только с одним из n несовместимых событий B

….,B

, то есть группа событий А и B

, или А и B

и т. д. Любая группа из этого ряда равносильна появлению события А.

Пример 2. Пусть события D, Е, F независимые. Какова будет вероятность событий трех извлечений подряд небракованных деталей при условии, что выборка повторная.

Решение. При данном условии после извлечения каждый раз бракованной детали, а больше одной детали нельзя извлечь, количество бракованных деталей с каждым разом уменьшается на единицу. В третий раз будет извлечена последняя бракованная деталь.

5. Распределение случайных величин

Затрагивая вопрос о вероятности некоторого события, нельзя не говорить о закономерностях появления случайных величин.

Чтобы упростить ситуацию, эти величины делят на:

1) прерывные (дискретные) – например, количество некоторой продукции, не отвечающее установленным стандартам;

2) непрерывные – например, единицы той же продукции, которые имеют неодинаковые параметры, но эти параметры находятся в пределах границ предельно допустимого.

Зависимость между возможными значениями случайных величин и их вероятностями, выраженными конкретным способом, называется законом распределения случайных величин.

Для того, чтобы установить математическую форму этого закона, предположим, что дискретная случайная величина х может принимать значения х

, x

, x

…, х

…., x

, и пусть каждому из этих значений соответствует вероятность P

. Тогда ряд вероятностей, соответствующих значениям случайной величины х, будет иметь следующий вид P

,P

,P

,…,P

,…,P

.

Очевидно, что вероятность P

является некоторой функцией от переменной х и имеет вид: P

= f(х), где x = x

, i = 1, 2…, k.

Рассмотрим поведение этой функции для вышеприведенных двух видов случайных величин.

1. Случайная величина – дискретная (прерывная).

Случайная величина х < х', где х < х' задано, может выражаться следующим образом:

Функция F(х)=F(х') называется функцией распределения случайной прерывной величины ч. 2. Случайная величина – непрерывна. Плотностью вероятности P

<< 1 2 3 4 5 6 >>
На страницу:
2 из 6

Другие электронные книги автора М. А. Бабаев

Другие аудиокниги автора М. А. Бабаев