Оценить:
 Рейтинг: 4.67

Солнечное вещество и другие повести, а также Жизнь и судьба Матвея Бронштейна и Лидии Чуковской (сборник)

Год написания книги
2018
Теги
<< 1 2 3 4 5 6 7 ... 12 >>
На страницу:
3 из 12
Настройки чтения
Размер шрифта
Высота строк
Поля

Йозеф Фраунгофер, который изготовил флинтгласовую призму, хранившуюся в лаборатории Кирхгофа, пользовался этим замечательным свойством призмы для того, чтобы разлагать на составные цвета солнечный луч. Через узкую щель впускал он в темную комнату пучок солнечных лучей и на пути этих лучей ставил свою призму. Лучи входили в призму узким пучком, а выходили широким веером. На противоположную белую стену ложилась разноцветная полоса света – солнечный спектр. В полосе были все семь цветов радуги: красный, за ним оранжевый, потом желтый, зеленый, голубой, синий и фиолетовый. Фраунгофер, как и многие физики до него, знал, что все эти цвета, от красного до фиолетового, все тончайшие оттенки цветов радуги, постепенно переходящие друг в друга, содержатся в белом солнечном свете, но эти отдельные цвета и оттенки заметны глазу только тогда, когда призма разлучает их между собой, разлагает в разноцветный спектр.

Путь лучей через призму.

На экране – полоска спектра: буквой Ф обозначен фиолетовый край спектра, буквой К – красный.

«Почему же, – подумал Кирхгоф, – не воспользоваться этой же самой стеклянной призмой для того, чтобы исследовать свет, испускаемый газовой горелкой? Если выделить узкий пучок такого света и пропустить его через призму – призма сразу разгадает те сигналы, которых не разгадали ни цветные стекла, ни стаканчики с красками».

Сигналы расшифрованы

Кирхгоф принес Бунзену свой прибор. Этому прибору изобретатель дал название «спектроскоп» – слово, которое он сам придумал. Теперь это слово известно всякому физику и химику, и в любой лаборатории можно увидеть спектроскоп, изготовленный на оптической фабрике. Но как не похожи эти современные удобные и точные спектральные приборы на неуклюжий спектроскоп, который Кирхгоф изготовил собственными руками! Деревянная коробка из-под сигар, стеклянная призма и старая подзорная труба с тремя выпуклыми стеклами – вот из чего был сделан первый спектроскоп.

Подзорную трубу Кирхгоф распилил пополам. Из одной трубы получилось две: первая с одним выпуклым стеклом, вторая – с двумя.

Обе трубки Кирхгоф вставил в смежные стенки сигарной коробки под углом одна к другой.

Трубку, в которой было только одно стекло, он расположил так, чтобы она глядела стеклом в коробку, а пустым отверстием наружу. Это отверстие он прикрыл картонным кружком с узкой щелью. Через щель должны были проникать в коробку лучи. Там, внутри коробки, их встречала призма, которую Кирхгоф укрепил на вращающейся оси. Пройдя сквозь призму, пучок лучей сворачивал в сторону и устремлялся в другую трубку широким разноцветным веером.

Приложив глаз к этой трубке и медленно поворачивая призму вокруг оси, можно было рассмотреть весь спектр лучей, попавших в щель спектроскопа.

В первый же день Бунзен и Кирхгоф испытали новый прибор. Бунзен зажег свою горелку, а Кирхгоф навел на пламя свой спектроскоп. Затем Бунзен стал вводить в пламя по очереди натрий, калий, медь, литий, стронций. И каждый раз, когда пламя меняло свой цвет, оба они внимательно рассматривали спектр лучей, испускаемых раскаленными парами металлов.

Спектры эти оказались не такими, как солнечный. В солнечном спектре все семь цветов радуги – от красного до фиолетового – ложатся сплошным рядом, а в спектре окрашенного газового пламени Кирхгоф и Бунзен увидели разрозненные цветные линии.

В спектре раскаленных паров калия горели две красные линии и одна фиолетовая, у паров натрия была одна линия – желтая[6 - Внимательно изучив эту желтую линию, физики обнаружили, что на самом деле она двойная: она состоит из двух очень близко расположенных друг к другу желтых линий. Эти линии получили у физиков особое название: их называют линиями D

и D

. – Прим. автора], у паров меди было много линий, среди которых ярче всех горели три зеленые, две желтые и две оранжевые. И каждая цветная линия появлялась всякий раз на том самом месте, где в солнечном спектре лежит цвет точно такого же оттенка: оранжевые линии меди ложились в оранжевой части спектра, желтая линия натрия – в желтой.

Наконец-то Бунзену удалось узнать, чем отличается малиновое пламя лития от малинового пламени стронция. Когда он смотрел на них простым глазом, он не различал их, но спектр одного пламени оказался совсем непохожим на спектр другого. Достаточно было посмотреть на них в спектроскоп Кирхгофа, чтобы сразу сказать, где литий, где стронций. Спектр лития состоит из одной яркой красной линии и одной оранжевой послабее, а спектр стронция – из одной голубой и нескольких красных, оранжевых, желтых линий.

Один за другим цветные сигналы были расшифрованы. Задача была решена.

Пепел, гранит и молоко

Кирхгоф и Бунзен нашли ключ к разгадке химического состава любого пламени, любого светящегося газа. Не нужно химического анализа, чтобы узнать, есть ли в пламени натрий. Если вы увидите его желтую линию в том месте спектра, где ей полагается быть, вы сразу обнаружите натрий. Если в спектре у вас две красные и одна фиолетовая линии, вы можете быть уверены, что в пламени есть калий. А если в спектре окажется красная линия, зелено-голубая и синяя, то, значит, в пламени есть водород.

Поставьте на пути лучей спектроскоп – и линии спектра безошибочно расскажут вам о химическом составе тела, испускающего лучи.

Такой способ угадывать химический состав по линиям спектра был назван спектральным анализом.

Бунзен стал исследовать множество разных веществ. Все, что попадалось ему под руку, он тащил к спектроскопу. Он вносил в пламя горелки и каплю морской воды, и каплю молока, и пепел сигары, и кусочки всевозможных минералов. В спектре пепла гаванской сигары он увидел желтую линию натрия и красные линии лития и калия; в спектре кусочка мела он увидел линии натрия, лития, калия, кальция, стронция. Множество разных веществ исследовал таким образом Бунзен, раскаляя их в жарком пламени горелки и наблюдая спектр раскаленных паров.

Новый способ распознавать химический состав оказался необычайно чувствительным и точным. Бунзен находил спектральные линии редкого металла лития в тех веществах, в которых лития так мало, что никаким другим способом его обнаружить невозможно. Литий был найден спектроскопом и в морской воде, и в золе водорослей, прибитых Гольфстримом к берегам Шотландии, и в ключевой воде, которую Бунзен взял из источника, бьющего из гранитной скалы в окрестностях Гейдельберга, и в кусках гранита, отколотого от той же скалы, и в листьях винограда, выросшего на скале, и в молоке коровы, которая ела эти листья, и в крови людей, которые пили это молоко.

Но газовая горелка и спектроскоп помогли химику Бунзену сделать еще более важное открытие: с их помощью он обнаружил два новых металла, о существовании которых никто и не подозревал. В спектре саксонского минерала лепидолита и в спектре рассола, полученного при выпаривании дюркхеймской минеральной воды, он увидел спектральные линии, которые не совпадали с линиями знакомых химикам веществ. Бунзен понял, что и в лепидолите, и в дюркхеймской минеральной воде скрыты какие-то еще неизвестные вещества.

И в самом деле, вскоре Бунзену удалось извлечь из минерала лепидолита новый металл, который он назвал рубидием, а из дюркхеймской воды другой новый металл, которому он дал имя «цезий»[7 - Сами названия новым элементам даны по цветам наиболее ярких линий в их спектрах: rubidus по-латыни означает «темно-красный», caesius – «голубой».].

Открытие рубидия и цезия было первой большой победой спектрального анализа.

Звезды в лаборатории

Шел год за годом. Физики и химики изучали все новые и новые спектры: спектры раскаленных паров разных солей, спектры раскаленных и расплавленных металлов, спектры разреженных газов, которые светятся, когда по ним проходит электрический ток, спектр электрической искры, спектр лучей, испускаемых раскаленной известью и прошедших сквозь окрашенные стекла, сквозь цветные жидкости, газы и пары.

Спектроскоп, когда-то построенный Кирхгофом из сигарной коробки, стеклянного клина и двух половинок подзорной трубы, стал родоначальником многих других спектроскопов, более удобных для работы и более точных.

Сам Кирхгоф много потрудился над тем, чтобы усовершенствовать свое изобретение. Вскоре спектроскопы стали изготовляться на оптических фабриках. В каждой лаборатории появился спектроскоп. Немецкие оптические фирмы сконструировали дорогие и сложно устроенные спектральные приборы для точных измерений. Лондонская фирма «Браунинг» выпустила в продажу дешевые карманные спектроскопы.

Усовершенствованный спектроскоп с четырьмя призмами

Переходя из призмы в призму, веер лучей разворачивается все шире и шире.

Спектроскоп пригодился и физикам, и химикам, и инженерам. Пригодился он даже сыщикам. Увидев на полу или на одежде подозрительное темное пятно, похожее на засохшую кровь, сыщик смывает пятно спиртом. А по спектру лучей, прошедших через спирт, в лаборатории могут сразу сказать, растворена ли в нем кровь[8 - Каждое вещество по-своему поглощает лучи разного цвета, и спектр поглощения столь же точно характеризует вещество, как и спектр излучения.].

Но гораздо больше, чем сыщикам, пригодился спектроскоп людям, которые изучают самые далекие светящиеся тела – планеты и звезды.

До изобретения спектроскопа никто и мечтать не смел о том, что когда-нибудь нам станет известно, из чего состоят звезды, планеты и Солнце.

Никто не знал, входят ли в состав небесных светил те же самые вещества, которые мы встречаем и у себя на Земле, или же небесные светила состоят из каких-то особенных, небесных веществ.

Только открытие Кирхгофа и Бунзена помогло людям затащить звезды в лабораторию, создать новую науку – небесную химию, химию небесных светил.

Астрономы всего мира с жадностью ухватились за спектральный анализ и стали применять его в самых разнообразных исследованиях. Здесь не хватит места рассказать обо всех тех удивительных вещах, которые были открыты с помощью спектрального анализа.

Только об одном открытии я расскажу здесь – о том открытии, с которого начинается необычайная история вещества, найденного на Солнце.

Спектроскоп исследует Солнце

Во время полного солнечного затмения, когда все Солнце закрыто от нас Луной, из-за черного диска Луны внезапно вырываются красные язычки пламени. Язычки кажутся нам маленькими, а на самом деле они во много раз длиннее диаметра нашей Земли.

Это извержения и взрывы на огненной поверхности Солнца.

Такие взрывы бывают на Солнце каждый день и по многу раз в день. Но простым глазом их можно наблюдать только во время полного солнечного затмения, когда лучезарный диск закрыт Луной и потому не ослепляет нас.

Странно, что ученые обратили внимание на эти огненные взрывы, выступающие из-за края Луны, всего только лет семьдесят пять тому назад[9 - В 1860 году.], хотя полные затмения Солнца бывают чуть ли не каждый год – то в одной, то в другой части земного шара – и каждый раз можно заметить солнечные выступы. Астрономы попросту их проглядели. Затмение длится всего несколько минут, а то и секунд, и за эти секунды надо столько записать, зарисовать, измерить! Все внимание астронома-наблюдателя поглощено лихорадочной работой, и часто волнение мешает ему видеть вещи, которые он не рассчитывал увидеть.

А может быть, астрономы и замечали эти взрывы, но считали их просто обманом зрения.

Как бы то ни было, 18 июля 1860 года, когда полное солнечное затмение наблюдалось в Испании, астрономы, съехавшиеся туда со всех концов Европы, наконец-то обратили внимание на солнечные выступы и даже успели их зарисовать. Тогда только ученые всего мира заговорили о солнечных выступах и стали наперебой высказывать различные догадки об их природе и происхождении[10 - Астрономы назвали солнечные выступы протуберанцами (от латинского слова protubero – «вздуваюсь»).].

Через восемь лет после испанского затмения, 18 августа 1868 года, ожидали полного солнечного затмения в Индии.

Жюль Жансен

Французский астроном Жансен, который всю свою жизнь занимался исследованием Солнца, решил воспользоваться этим затмением, чтобы изучить спектр солнечных выступов. Взяв с собой спектроскоп, он отправился в далекое морское путешествие. Он поспел вовремя. В тот момент, когда затмение наступило и красные языки вырвались из-за черного лунного диска, Жансен навел на них трубу своего спектроскопа. Он увидел цветные линии – спектр тех раскаленных газов и паров, которые извергает Солнце.

Линии были такие яркие, что у Жансена невольно возникла мысль: а нельзя ли увидеть их и без затмения, при полном блеске Солнца?
<< 1 2 3 4 5 6 7 ... 12 >>
На страницу:
3 из 12