Оценить:
 Рейтинг: 0

Наука сознания. Современная теория субъективного опыта

Год написания книги
2019
Теги
<< 1 2 3 >>
На страницу:
2 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля

Я подозреваю, что постепенный сдвиг в философии от сосредоточения на элементах в потоке сознания к акту осознания некоторым образом связан с развитием за последние полвека компьютерных технологий. С усовершенствованием информационных технологий информационное содержание сознания перестало быть загадкой, а сам акт его осознания, переживания опыта отдалился и кажется неразрешимым. Давайте рассмотрим несколько примеров.

Вы можете подсоединить к компьютеру цифровую камеру и дать системе команду обрабатывать входящую зрительную информацию. Компьютер в состоянии определить цвета, формы, размеры объектов, распознать их. Человеческий мозг делает что-то похожее. Разница в том, что у людей еще есть субъективное переживание того, что они видят. Мы не просто регистрируем информацию о том, что предмет красный: мы переживаем опыт красноты. Мы что-то чувствуем, когда видим. Современный компьютер может обработать зрительный образ, но инженеры еще не придумали, как заставить его осознать полученную информацию.

А теперь рассмотрим кое-что более личное, нежели зрительное восприятие: ваши воспоминания, которые определяют ваш жизненный путь. Постоянно бурлящие воспоминания – типичный пример джойсовского потока сознания. И все же мы умеем строить машины, которые хранят и извлекают их. На это способен каждый компьютер, а ученые знают общие принципы, да чуть ли не все детали того, как воспоминания хранятся в мозге. Память – не какая-то принципиальная загадка. Но не является она и причиной сознания. Содержание сознания – в данном примере это воспоминания – совсем не то же самое, что акт осознания воспоминания.

Приведу еще один пример: принятие решений. Тайну человеческого сознания лучше всего характеризует именно эта наша способность. Мы берем информацию, обрабатываем ее, оцениваем – и совершаем выбор, что делать дальше. Но я бы все-таки сказал, что сознание не является неотъемлемой частью принятия решений. Все компьютеры делают это. В каком-то смысле это и есть задача компьютера. Он берет информацию, производит с ней какие-то действия и пользуется ею, чтобы выбрать один из многих вариантов дальнейших действий. Большинство решений в человеческом мозге – вероятно, десятки тысяч в день – принимаются автоматически, без участия субъективного переживания опыта. В некоторых особых случаях мы сообщаем о субъективном осознании принятия решения. Иногда мы называем это намерением, выбором или свободой воли. Но простая способность принять решение не требует сознания.

Эти и многие другие примеры показывают, как именно расцвет компьютерных технологий позволил увидеть различие между содержанием сознания (которое становится все понятнее на инженерном уровне) и актом осознания этого содержания. Мне интересна вторая, более значимая часть этой головоломки: как нам вообще удается получить субъективное переживание чего бы то ни было?

Некоторые считают, что это ограничивающий подход. Меня часто спрашивают: а как же память? Как же осознанный выбор? Самопонимание? А намерения и убеждения? Разве это не основа сознания? Я согласен: все перечисленные вопросы важны, они суть главные предметы, лежащие в ведре человеческого сознания. Но в них нет принципиальной загадки. Это вопросы обработки информации, и мы можем представить себе, хотя бы в общих чертах, как они ставятся в инженерном смысле. Принципиальная загадка – само ведро. Что такое сознание – из чего оно сделано? Как в него попадают, в чем выгода в него попасть и почему в него попадает так мало из содержащегося в мозге?

Ученые традиционно полагали, что, применяя научный подход, нечто столь аморфное и ускользающее понять невозможно. Но, принимая в расчет недавние наблюдения и выводы, я практически уверен, что сознание настолько же поддается пониманию и построению, как и обработка зрительной информации, память, принятие решений или любой другой элемент из его содержания.

Я и раньше много писал о сознании. Но эта книга целиком обращена к широкой аудитории. В ней я пытаюсь как можно проще и четче разъяснить многообещающую научную теорию сознания, которая одинаково приложима и к биологическому мозгу, и к искусственной машине.

Завязка нескольких следующих глав – эволюция. Я буду описывать развитие усложнения нервной системы начиная от полумиллиарда лет назад, когда появились нейроны (одни из видов клеток, из которых состоит мозг). По пути я стану вводить элементы теории схемы внимания, и к шестой главе у нас будут готовы основные строительные леса.

Затем я обращусь к тому, как данная теория взаимодействует с другими. Это одна из полудюжины основных теорий сознания, которые сейчас набирают вес в научной литературе. Согласно моим представлениям, которые я стараюсь передать в книге, эти теории не всегда следует рассматривать как конкурирующие – и не стоит гадать, какая из них перебьет всех соперников. Несмотря на их различия (а я действительно со многим в них не согласен) между этими теориями могут также быть странные, потайные связи. В каждой есть важные мысли. Мне кажется, мы начинаем видеть на горизонте проблески общего мнения… Или, скорее, сети согласованных представлений.

В последних главах я углублюсь в потенциальные технологические последствия этой теории. Мы близки к пониманию сознания, достаточному для его конструирования. А когда у нас это получится, новые технологии, вероятно, изменят лицо нашей цивилизации. Сознательные машины – лишь первый шаг. Если сознание удастся построить, то тогда в принципе и разум можно будет переносить с одного устройства на другое. Более отдаленное, но возможное следствие – считывание данных с человеческого мозга и перенос психического мира этого человека на искусственную платформу[10 - R. A. Koene, “Scope and Resolution in Neural Prosthetics and Special Concerns for the Emulation of a Whole Brain,” Journal of Geoethical Nanotechnology 1 (2006): 21–29; R. Kurzweil, The Singularity Is Near: When Humans Transcend Biology (New York: Penguin Books, 2006); H. Markram, E. Muller, S. Ramaswamy, M. W. Reimann, M. Abdellah, C. A. Sanchez, A. Ailamaki, et al., “Reconstruction and Simulation of Neocortical Microcircuitry,” Cell 163 (2015): 456–92; A. Sandberg and N. Bostrom, “Whole Brain Emulation: A Roadmap,” Technical Report #2008–3, Future of Humanity Institute, Oxford University, 2008.]. Такие технологии могли бы позволить личности жить вечно и исследовать враждебные биологическим телам среды – например, межзвездное пространство. У нас на пути больше не стоят законы физики, необходимо лишь изобрести нужные устройства.

Если сознание можно понять с научной и инженерной точек зрения, то данная тема перестает быть просто философским развлечением для ученых. Она становится непосредственно важной практической задачей. Дальше в книге я опишу возможные применения сознания во многих вариантах технологического будущего; некоторые из них покажутся привлекательными, а некоторые, скажем прямо, ужасными. Но, хорошо это или плохо, я практически уверен, что мы стремительно движемся к научному пониманию сознания и способности сделать его искусственно.

Глава 2

Крабы и осьминоги

Самовоспроизводящаяся бактериальная жизнь появилась на Земле примерно 4 млрд лет назад. На протяжении почти всей истории Земли жизнь оставалась на одноклеточном уровне, и ничего похожего на нервную систему не существовало вплоть до 600–700 млн лет назад. В теории схемы внимания сознание основано на определенном способе обработки информации нервной системой. Ключевой элемент этой теории (и, я полагаю, любого развитого интеллекта) – внимание: способность мозга в каждый момент времени сосредоточивать свои ограниченные ресурсы на небольшом фрагменте мира, чтобы получить большую глубину обработки. В этой и нескольких следующих главах я рассмотрю, как внимание могло развиться от древних животных до людей и как вместе с ним могло появиться свойство, которое мы называем сознанием[11 - И другие авторы убедительно описывали возможный ход эволюции сознания, включая туда связи сознания с вниманием (хотя делали это иначе, чем я). К примеру: C. Montemayor and H. H. Haladjian, Consciousness, Attention, and Conscious Attention (Cambridge, MA: MIT Press, 2015); R. Ornstein, Evolution of Consciousness: The Origins of the Way We Think (New York: Simon & Schuster, 1991).].

Начнем с морских губок, они “помогут” очертить границы эволюции нервной системы. Губки – самые примитивные многоклеточные организмы, у них нет так называемого плана тела, нет конечностей, нет мышц, – и нервы им не нужны. Они закрепились на дне океана и фильтруют питательные вещества подобно ситу. Но у нас есть общие с губками гены, в том числе не менее 25 из тех, которые у людей помогают структурировать нервную систему[12 - O. Sakarya, K. A. Armstrong, M. Adamska, M. Adamski, I. F. Wang, B. Tidor, B. M. Degnan, T. H. Oakley, and K. S. Kosik, “A Post-Synaptic Scaffold at the Origin of the Animal Kingdom,” PLoS One 2 (2007): e506.]. У губок те же самые гены могут выполнять более простые функции, например участвовать в коммуникации клеток друг с другом. Губки как будто балансируют на эволюционной грани нервной системы.

Считается, что последний общий у нас с ними предок существовал в диапазоне от 700 до 600 млн лет назад (см. шкалу времени на рис. 2.1)[13 - Z. Yin, M. Zhu, E. H. Davidson, D. J. Bottjer, F. Zhao, and P. Tafforeau, “Sponge Grade Body Fossil with Cellular Resolution Dating 60 Myr before the Cambrian,” Proceedings of the National Academy of Sciences USA 112 (2015): E1453–60.].

Другие древние животные – медузы – напротив, обладают нервной системой. Медузы плохо сохраняются в окаменелостях, но, анализируя их генетические взаимосвязи с другими животными, биологи предполагают, что они могли отделиться от остального животного царства примерно 650 млн лет назад[14 - D. H. Erwin, M. Laflamme, S. M. Tweedt, E. A. Sperling, D. Pisani, and K. J. Peterson, “The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals,” Science 334 (2011): 1091–7; A. C. Marques and A. G. Collins, “Cladistic Analysis of Medusozoa and Cnidarian Evolution,” Invertebrate Biology 123 (2004): 23–42.]. Эти цифры, возможно, изменятся с получением новых данных, но в качестве правдоподобного предположения скажем, что нейроны – базовые клеточные компоненты нервной системы – впервые появились в животном царстве между губками и медузами.

Нейрон по сути своей – это клетка, передающая сигнал. Волна электрохимической энергии прокатывается по мембране клетки от одного края нейрона до другого со скоростью чуть более 60 м/с и действует на другой нейрон, мышцу или железу. Самые первые нервные системы могли быть устроены как простые сети нейронов, пронизывающие тело и соединяющие мышцы. По этому принципу нервных сетей существуют гидры[15 - H. R. Bode, S. Heimfeld, O. Koizumi, C. L. Littlefield, and M. S. Yaross, “Maintenance and Regeneration of the Nerve Net in Hydra,” American Zoology 28 (1988): 1053–63.]. Это небольшие водные создания, прозрачные, похожие на цветы, в роли тела у них выступает мешок со множеством щупалец; они принадлежат к той же древней категории, что и медузы. Если коснуться гидры в одном месте, нервная сеть распространит сигнал повсюду и вся гидра дернется.

Нервная сеть не обрабатывает информацию – не извлекает из нее какого-то значения. Она просто передает сигналы по телу, соединяет сенсорный стимул (прикосновение) с мышечной реакцией (подергивание). Но после возникновения нервной сети нервные системы довольно быстро перешли на новый уровень сложности: речь идет о способности усиливать некоторые сигналы относительно других. Форсирование сигнала – простой, но мощный прием, один из основных способов, посредством которых нейроны манипулируют информацией. Это базовый компонент практически всех известных нам вычислений, происходящих в мозге.

Один из наиболее изученных примеров – глаз краба[16 - R. B. Barlow Jr. and A. J. Fraioli, “Inhibition in the Limulus Lateral Eye in Situ,” Journal of General Physiology 71 (1978): 699–720.]. У этого животного сложные глаза со множеством детекторов, в каждом из которых есть нейрон. Когда свет падает на детектор, он активирует находящийся внутри нейрон. Пока все идет как надо. Но добавим щепотку сложности: каждый нейрон связан с ближайшими соседями и по этим связям они соревнуются друг с другом. Когда активируется нейрон в одном детекторе, он пытается приглушить активность нейронов в соседних, подобно человеку в толпе, который старается кричать громче всех и заглушить тех, кто рядом с ним.

В результате получается, что, если на глаз краба направлено размытое пятно света и на один из детекторов попадает самая яркая его часть, нейрон в этом детекторе развивает высокую активность, побеждает в соревновании и отключает соседей. Паттерн активности набора детекторов сигнализирует не только о пятне света, но и о том, что вокруг пятна – кольцо темноты. Таким образом, сигнал усилен. Глаз краба берет размытую реальность из оттенков серого и повышает ее резкость, получая контрастную картинку, где тени темнее, а яркое ярче. Усиление сигнала – прямое следствие того, что нейроны подавляют своих соседей: этот процесс называется латеральным торможением[17 - K. Hadeler, “On the Theory of Lateral Inhibition,” Kybernetik 14 (1974): 161–5.].

Описанный механизм в глазу краба, пожалуй, один из самых простых и базовых примеров, модельный экземпляр внимания. Сигналы соревнуются друг с другом, победители усиливаются за счет проигравших, и победившие сигналы затем влияют на движения животного. Это и есть моделирующая сущность внимания. Наше, человеческое, внимание – просто усложненная версия, состоящая из подобных компонентов. Латеральное торможение, такое же как в глазу у краба, можно найти на любой стадии обработки информации в нервной системе человека – от глаза до высших уровней мышления в коре головного мозга. Зарождение внимания лежит глубоко в эволюционной древности, ему более полумиллиарда лет, и произошло оно от удивительно простого нововведения (на тот момент, разумеется).

Крабы принадлежат к обширной группе животных под названием “членистоногие”, в которую входят пауки, насекомые и подобные им создания с твердыми сегментированными экзоскелетами. Они отделились от других животных около 600 млн лет назад[18 - S. Koenemann and R. Jenner, Crustacea and Arthropod Relationships (Boca Raton: CRC Press, 2005).]. Самое известное вымершее членистоногое, у которого сегодня больше всего поклонников, – это трилобит, существо из сочленений и ножек, похожее на маленького мечехвоста, которое главным образом копошилось на дне кембрийских морей примерно 540 млн лет назад. Когда трилобиты вымерли и оказались погребены в тончайшей взвеси осадка на дне океана, они превратились в окаменелости, у которых во всех подробностях сохранились фасеточные глаза[19 - B. Schoenemann, H. P?rnaste, and E. N. K. Clarkson, “Structure and Function of a Compound Eye, More Than Half a Billion Years Old,” Proceedings of the National Academy of Sciences USA 114 (2017): 13489–94.]. Если вы вглядитесь в выпученные очи ископаемого трилобита через лупу, то, скорее всего, вам удастся увидеть нетронутую мозаику отдельных детекторов. Судя по ископаемым остаткам, глаза трилобитов весьма напоминали глаза современных крабов и, должно быть, в них использовался тот же способ соревнования между соседними детекторами, чтобы повысить резкость обзора древнего морского дна.

Представьте себе животное, которое собирается по частям, сосредоточиваясь на каждом конкретном фрагменте. У такого животного любая часть тела будет работать как отдельный механизм, отбирая себе информацию и выделяя самые перцептивно значимые (насыщенные) сигналы. Один глаз скажет: “Вот самое яркое пятно, не реагируй на остальные”. А в это же время одна из ног пожалуется: “Меня только что сильно ткнули вот сюда, не обращай внимания на легкие прикосновения рядом!” Животное, способное лишь на такое, будет действовать как сборище отдельных “деятелей”, которые склеены друг с другом просто физически, при этом каждый выкрикивает свои сигналы и вызывает свои собственные действия. Поведение такого животного будет в лучшем случае беспорядочным.

Для того чтобы непротиворечиво реагировать на окружающую среду, животному нужно более централизованное внимание. Могут ли отдельные источники входящей информации – глаза, тело, ноги, уши, химические сенсоры – объединить свои данные, чтобы создать глобальную иерархию и отсортировать соревнование между сигналами? Подобное взаимодействие позволило бы животному выделить тот самый яркий объект в окружающей среде, который показался бы важнее всего в данный момент, и отреагировать единым, значимым образом.

Никто не знает, когда впервые появилось такое централизованное внимание, – в частности, потому что никто не знает точно, у каких животных оно есть, а у каких нет. У позвоночных есть центральный процессор внимания, который я опишу в следующей главе. Но у беспозвоночных механизмы внимания не так тщательно изучены. У многих видов животных, например кольчатых червей и брюхоногих моллюсков, нет централизованного мозга. У них есть кластеры нейронов, или ганглии, разбросанные по всему телу для локальной обработки информации[20 - R. Gillette and J. W. Brown, “The Sea Slug, Pleurobranchaea californica: A Signpost Species in the Evolution of Complex Nervous Systems and Behavior,” Integrative and Comparative Biology 55 (2015): 1058–69.]. Вероятно, нет у этих животных и централизованного внимания.

Более подходящие кандидаты на обладание им – членистоногие, такие как крабы, насекомые и пауки. У них есть центральный мозг или, по крайней мере, скопление нейронов в голове, которое обильнее всех остальных в их телах[21 - C. R. Smarandache-Wellmann, “Arthropod Neurons and Nervous System,” Current Biology 26 (2016): R960–R965.]. Эти крупные ганглии могли развиться в том числе из-за каких-то потребностей зрения. Поскольку глаза расположены в голове, а зрение – самое сложное и нагруженное информацией чувство, голова получает самую большую долю нейронов. Некоторые аспекты обоняния, вкуса, слуха и осязания также сходятся в этом центральном ганглии. Насекомые мозговитее, чем мы думаем. Когда вы пытаетесь прихлопнуть муху, а ей практически всегда удается ускользнуть – это не просто рефлекс. Скорее, у мухи есть то, что мы называем централизованным вниманием – способность быстро сосредоточить ресурсы обработки информации на том фрагменте окружающего мира, который важнее всего в данный момент, чтобы выдать скоординированную реакцию[22 - S. Koenig, R. Wolf, and M. Heisenberg, “Visual Attention in Flies – Dopamine in the Mushroom Bodies Mediates the After-Effect of Cueing,” PLoS One 11 (2016): e0161412; B. van Swinderen, “Attention in Drosophila,” International Review of Neurobiology 99 (2011): 51–85.].

Осьминоги – суперзвезды среди беспозвоночных: их интеллект поразителен. Их относят к моллюскам – как улиток и мидий. Моллюски появились, вероятно, около 550 млн лет назад и оставались довольно просто организованными – по крайней мере, в том, что касается нервной системы, – на протяжении сотен миллионов лет[23 - D. H. Erwin, M. Laflamme, S. M. Tweedt, E. A. Sperling, D. Pisani, and K. J. Peterson, “The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals,” Science 334 (211): 1091–97; B. Runnegar and J. Pojeta Jr., “Molluscan Phylogeny: The Paleontological Viewpoint,” Science 186 (1974): 311–17.]. У одной из ветвей развития, головоногих моллюсков, постепенно развились сложный мозг и сложное поведение; формой они стали напоминать современных осьминогов примерно 300 млн лет назад[24 - J. Kluessendorf and P. Doyle, “Pohlsepia mazonensis, an Early ‘Octopus’ from the Carboniferous of Illinois, USA,” Palaeontology 43 (2000): 919–26; A. R. Tanner, D. Fuchs, I. E. Winkelmann, M. T. Gilbert, M. S. Pankey, A. M. Ribeiro, K. M. Kocot, K. M. Halanych, T. H. Oakley, R. R. da Fonseca, D. Pisani, and J. Vinther, “Molecular Clocks Indicate Turnover and Diversification of Modern Coleoid Cephalopods during the Mesozoic Marine Revolution,” Proceedings of Royal Society, B, Biological Sciences 284 (2017): 20162818.].

Осьминоги, кальмары и каракатицы – поистине инопланетяне по отношению к нам[25 - P. Godfrey-Smith, Other Minds: The Octopus, the Sea, and the Deep Origins of Consciousness (New York: Farrar, Straus and Giroux, 2016); S. Montgomery, The Soul of an Octopus (New York: Atria Books, 2015).]. Так далеко от нас на древе жизни нет других разумных животных. Они показывают нам, что мозговитый ум – не единичный феномен, так как он независимо развивался как минимум дважды: один раз в случае позвоночных, а затем снова у беспозвоночных. Осьминоги прекрасные хищники, а полагаются они на зрение. Хороший хищник должен обладать лучшей координацией и умом, чем его добыча, а использование зрения, чтобы обнаружить и распознать жертву, требует особо крупных моделирующих мощностей. Ни у какой другой сенсорной системы нет подобного пожарного шланга, хлещущего внутрь всевозможной информацией, и нет подобной необходимости в грамотном способе сосредоточиваться на полезных фрагментах этой информации. А значит, внимание для такого хищника решает всё. Может быть, этот-то образ жизни осьминога и повлиял на развитие его интеллекта.

По тем или иным причинам у этого животного развилась выдающаяся нервная система. Осьминоги могут использовать инструменты, решать задачи и демонстрируют неожиданные творческие подходы[26 - A.-S. Darmaillacq, L. Dickel, and J. A. Mather, Cephalopod Cognition (Cambridge, UK: Cambridge University Press, 2014); D. B. Edelman, B. J. Baars, and A. K. Seth, “Identifying Hallmarks of Consciousness in Non-Mammalian Species,” Consciousness and Cognition 14 (2015): 169–87; J. N. Richter, B. Hochner, and M. J. Kuba, “Pull or Push? Octopuses Solve a Puzzle Problem,” PLoS One 11 (2016): e0152048.]. Классическим стал пример, в котором эти моллюски научились откручивать крышки стеклянных банок, чтобы добраться до лакомства внутри. У осьминога есть центральный мозг, а также небольшие независимые процессоры в каждом щупальце; таким образом получается уникальная комбинация централизованного и распределенного управления[27 - B. Hochner, “An Embodied View of Octopus Neurobiology,” Current Biology 22 (2012): R887–92.]. Также у животного, вероятно, есть модели самого себя: богатые, постоянно обновляющиеся сгустки информации для отслеживания своего тела и поведения. С инженерной точки зрения, чтобы функционировать эффективно, ему бы пригодились эти модели. Например, у моллюска может быть что-то вроде схемы тела, которая следит за его формой и структурой, чтобы координировать движения (возможно, у каждого щупальца есть своя схема себя). В этом смысле можно сказать, что осьминог знает о самом себе. Он обладает как этой информацией, так и сведениями об окружающем мире, и эти данные приводят к сложному поведению.

Но перечисленные действительно чудесные черты не означают, что у осьминога есть сознание.

Исследователи сознания иногда используют термин “объективное осознание” для обозначения того, что информация попала внутрь, обрабатывается и может повлиять на выбор поведения[28 - P. M. Merikle, D. Smilek, and J. D. Eastwood, “Perception without Awareness: Perspectives from Cognitive Psychology,” Cognition 79 (2001): 115–34; R. Szczepanowski and L. Pessoa, “Fear Perception: Can Objective and Subjective Awareness Measures Be Dissociated?” Journal of Vision 10 (2007): 1–17.]. Это определение задает невысокую планку: так можно сказать, что микроволновая печь осознает настройки времени, а беспилотный автомобиль – надвигающееся препятствие. Да, осьминог объективно осознает себя и объекты вокруг. В нем содержится информация.

Но осознает ли он субъективно? Если бы осьминог умел говорить, мог бы он сообщить о субъективном опыте сознания так же, как мы с вами?

Давайте его и спросим. Проведите неправдоподобный мысленный эксперимент (и запомните его – он нам еще пригодится в этой книге). Предположим, в нашем распоряжении оказался потрясающий научно-фантастический прибор – назовем его Речинатор-5000, – который переводит информацию в речь. В нем есть порт, к которому можно подключить голову осьминога, и прибор вербализует информацию, найденную в мозге.

Прибор может озвучить что-то вроде: “Там рыба”, если зрительная система осьминога содержит информацию о рыбе, плывущей неподалеку. Он может сказать: “Я существо с кучей конечностей, которые могут двигаться так и сяк”. Или: “Чтобы достать рыбу из банки, нужно повернуть ту круглую штуку”. Прибор бы многое сказал, отражая информацию, которая, как мы знаем, содержится в нервной системе осьминога. Но нам неведомо, произнесет ли он: “У меня есть субъективный личный опыт – осознание – этой рыбы. Я не просто обрабатываю информацию о ней. Я ее переживаю. Я чувствую, каково это – видеть рыбу”. Мы не знаем, есть ли в мозге информация подобного рода, поскольку не в курсе того, что сообщают осьминогу его модели самого себя. У него, возможно, нет механизмов, чтобы смоделировать сознание или приписать себе это свойство. Применение понятия “сознание” по отношению к этому животному может оказаться нерелевантным.

Тайна осьминога – пример того, что животное может быть сложным и умным, а мы тем не менее все еще не в силах ответить на вопрос о его субъективном опыте или даже о том, есть ли смысл задавать такой вопрос применительно к этому существу.

Возможно, один из источников путаницы здесь – невольное, но мощное стремление человека приписывать сознание всему вокруг. Как я подчеркнул в первой главе, мы склонны видеть сознание у кукол и других, еще менее вероятных кандидатов. Люди иногда верят, что их домашние растения осознают. Осьминог, у которого богатый поведенческий арсенал и большие глаза, наполненные сфокусированным вниманием, является в некотором роде тестом Роршаха с чернильными пятнами, убедительно запускающим в нас сильное социальное восприятие. Мы не только умом понимаем, что он собирает объективную информацию о мире, – мы не можем не чувствовать, что из этих задумчивых глаз исходит субъективное осознание. Но правда состоит в том, что мы этого не знаем, и наше ощущение сознающего разума говорит больше о нас, чем об осьминогах. Специалисты, которые изучают осьминогов, рискуют стать самыми ненадежными экспертами, потому что именно на них прежде всех остальных подействуют чары этих удивительных созданий. Позже, в пятой главе, я вернусь к всепроникающему аспекту человеческого сознания: оно инструмент в нашем социальном арсенале, и мы безотчетно приписываем его тем, кто действует вокруг нас.

Чтобы внести ясность: я не утверждаю, что у осьминогов нет сознания. Но нервная система этих моллюсков до сих пор настолько неполно изучена, что мы не можем сравнить организацию их мозга с организацией нашего и предположить, до какой степени могут быть похожи на наши их алгоритмы и модели самих себя. Для проведения подобных сравнений нам нужно заняться животными из своей собственной родословной – позвоночными.

Глава 3

Централизованный интеллект лягушки

В детстве я много времени проводил на ферме на севере штата Нью-Йорк. Каждое лето целыми ночами мы слушали брачное кваканье лягушки-быка в пруду за домом. Мы звали его Элвисом, а лягушку, чей голосок потоньше доносился в ответ, – Присциллой. С тех пор я обожаю лягушек, а занявшись нейробиологией, захотел узнать, что происходит у них в головах.

У этих животных есть область мозга, которая называется “тектум”. На латыни это значит “крыша”, тектум – крыша среднего мозга, самый заметный выступ на его верхушке. Он есть не только у лягушек. Возможно, лучше всего он изучен у амфибий, но присутствует также у рыб, рептилий, птиц и млекопитающих. Эта область мозга есть у всех позвоночных, и, насколько нам известно, ни у кого другого. Можно с немалой уверенностью предположить, что тектум развился примерно полмиллиарда лет назад у маленьких бесчелюстных рыб, общих предков позвоночных, и все потомки унаследовали эту часть мозга[29 - E. Knudsen and J. S. Schwartz, “The Optic Tectum, a Structure Evolved for Stimulus Selection,” in Evolution of Nervous Systems, ed. J. Kaas (San Diego: Academic Press, 2017), 387–408; C. Maximino, “Evolutionary Changes in the Complexity of the Tectum of Nontetrapods: A Cladistic Approach,” PLoS One 3 (2008): e3582.].

У людей тоже есть тектум, но у нас он расположен не на верхушке мозга. Это сравнительно небольшой выступ (точнее, их два – по одному с каждой стороны), погребенный под кипами мозговых структур, которые расширились в нашем эволюционном прошлом. У людей и других млекопитающих он обычно называется верхним холмиком четверохолмия. Здесь для простоты я буду называть этот холмик тектумом.

Большую часть эволюционной истории позвоночных тектум был вершиной интеллектуальных достижений: самый сложный процессор в центре мозга. У лягушки он принимает зрительную информацию и выстраивает из мира вокруг амфибии некий аналог карты[30 - D. Ingle, “Visuomotor Functions of the Frog Optic Tectum,” Brain, Behavior, and Evolution 3 (1970): 57–71.]. Каждая точка на округлой поверхности тектума соответствует точке в окружающем животное пространстве. Тектум с правой стороны мозга лягушки содержит точную карту зрительного поля левого глаза, то же самое с левым тектумом и правым глазом. Когда вокруг лягушки хаотично летает черная точка, глаза принимают эту информацию, зрительный нерв посылает сигналы в тектум, а тот запускает управление мышцами. В результате язык лягушки “выстреливает” с потрясающей точностью и ловит муху.

Логику такого устройства ввода-вывода особенно ярко продемонстрировал нейробиолог Роджер Сперри. В начале 1960-х гг.[31 - Здесь авторская неточность. Роджер Сперри проводил подобные эксперименты в начале 1940-х гг. Работа 1943 г., на которую ссылается автор в Примечаниях, посвящена исследованию зрения тритонов без регенерации нерва. Упомянутый выше эксперимент был описан в работе 1944 г. “Optic nerve regeneration with return of vision in anurans”, опубликованной в Journal of neurophysiology. Полное библиографическое описание статьи см. в Примечаниях на с. 224. – Прим. науч. ред.] он провел на лягушке операцию: отделил глаза, перевернул их на 180° и вставил обратно[32 - R. W. Sperry, “Effect of 180 Degree Rotation of the Retinal Field on Visuomotor Coordination,” Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 92 (1943): 263–79; R. W. Sperry, “Optic nerve regeneration with return of vision in anurans,” Journal of neurophysiology 7.1 (1944): 57–69 (дополнение науч. ред.).]. Глаза прижились. У лягушек удивительные способности к регенерации. Зрительный нерв заново пророс от глаз к тектуму и восстановил внутреннюю зрительную карту. Когда подопытная лягушка вновь начала видеть, при появлении мухи над головой она стала выбрасывать язык вниз. Если муха жужжала справа от лягушки, язык вылетал влево. Централизованный интеллект лягушки – это простой, но идеально эффективный механизм, который собирает сигналы от нервов и подбирает для них соответствующие реакции. К сожалению, манипуляции ученых его обманули. Модифицированную лягушку пришлось кормить с рук, иначе она бы погибла от голода.

Тектум лягушки занят не только зрением. Он также собирает информацию от ушей и осязательных рецепторов на коже[33 - C. Comer and P. Grobstein, “Organization of Sensory Inputs to the Midbrain of the Frog, Rana pipiens,” Journal of Comparative Physiology 142 (1981): 161–68.]. Карта поверхности тела лягушки, а также слухового и зрительного пространств вокруг животного сходятся и частично интегрируются в тектуме. Это высший уровень интеграции в мозге амфибий: центральный процессор, который собирает воедино разрозненные сигналы, поступающие из окружающей среды, сосредоточивается на самом важном событии, происходящем в каждый конкретный момент, и запускает реакцию[34 - B. E. Stein and M. A. Meredith, The Merging of the Senses (Cambridge, MA: MIT Press, 1993).]. Тектум – механизм централизованного внимания лягушки.

Ученые могут прощупывать мозг с удивительной точностью, подобно тому как инженер-компьютерщик прощупывает микросхему. В одном из стандартных методов используются электроды: тонкие, как волосок, жесткие проводки, покрытые пластиковой изоляцией везде, кроме кончика. Оголенной остается примерно десятая доля миллиметра провода. Словно миниатюрный детектор, электрод в состоянии обнаруживать электрическую активность на микроскопическом расстоянии от оголенного металла. Длинный, гибкий провод, тянущийся от электрода, соединяет его с принимающим оборудованием. Точный механизм закрепляет электрод на месте, а затем двигает его микрометр за микрометром, чтобы исследовать заданную область мозга.

Такая схема достаточно чувствительна для измерения активности отдельных нейронов в мозге. Когда нейрон вблизи кончика электрода подает сигнал своим соседям, устройство регистрирует этот крошечный электрический импульс. Сигнал усиливается и передается в динамики, а экспериментатор слышит щелчок. В обычных обстоятельствах нейрон выдает один-два случайных щелчка в секунду, но, если он активно задействуется в происходящем, клетка может внезапно разразиться сотней щелчков за секунду. Любимая забава нейробиологов – слушать щелчки отдельных нейронов и гадать, какую роль те выполняют в мозге.

Каждый нейрон в тектуме лягушки работает как детектор[35 - C. Comer and P. Grobstein, “Organization of Sensory Inputs to the Midbrain of the Frog, Rana pipiens,” Journal of Comparative Physiology 142 (1981): 161–68; D. Ingle, “Visuomotor Functions of the Frog Optic Tectum,” Brain, Behavior, and Evolution 3 (1970): 57–71.]. Он следит за определенной зоной пространства – например, областью непосредственно над головой – и срабатывает чаще, когда в эту область попадает какой-то объект. Нейроны бывают разные: какие-то предпочитают движущиеся определенным образом зрительные стимулы, другим больше нравятся звуки или прикосновения. По крайней мере некоторые нейроны мультисенсорны: для них нет разницы, приближается к макушке видимый объект, раздается оттуда звук или к голове прикасаются, – они сработают, чтобы передать сигнал остальному мозгу. Если два или более чувств сходятся, передавая одно и то же сообщение о приближающемся объекте, соответствующие нейроны в тектуме становятся особенно активными. Простое вычисление словно говорит: “одна улика – уже хорошо, а если их две или три – явно происходит что-то важное”[36 - B. E. Stein and M. A. Meredith, The Merging of the Senses (Cambridge, MA: MIT Press, 1993).].
<< 1 2 3 >>
На страницу:
2 из 3

Другие аудиокниги автора Майкл Грациано