Оценить:
 Рейтинг: 0

Вирусы и эпидемии в истории мира. Прошлое, настоящее и будущее

Год написания книги
2020
Теги
<< 1 2 3 4 5 6 ... 12 >>
На страницу:
2 из 12
Настройки чтения
Размер шрифта
Высота строк
Поля
И все-таки, чем являются эти возбудители инфекций, называемые вирусами? Что они делают и как действуют? Некоторые из этих вирусов определяли победителей в человеческих битвах, поражая, например, лишь одну из сражающихся армий и не затрагивая другую. Они обескровили несколько стран и континентов; стали причиной географических, экономических и религиозных изменений.

Только оспа в XX веке унесла приблизительно 300 миллионов жизней, что в три раза превышает количество погибших во время всех войн этого века

. В XVI–XVII веках от оспы умирали императоры Японии и Бирмы, а также короли и королевы европейских государств, и, соответственно, прерывались династии, менялось управление странами и распадались союзы

. Оспа помешала морскому вторжению в Англию объединенного франко-испанского флота, возглавляемого Испанией; она же сыграла ключевую роль в предотвращении завоевания Канады Континентальной армией во время Американской революции. Успешное покорение империй ацтеков в Мексике и инков в Перу горсткой испанских конкистадоров под предводительством соответственно Эрнана Кортеса и Франсиско Писаро произошло большей частью благодаря эпидемиям оспы и кори, косившим ряды коренных защитников. Большинство конкистадоров уже переболели этими инфекциями в Европе и поэтому были устойчивы к их воздействию, тогда как население Нового Света было совершенно уязвимо. Действительно нельзя объяснить победу испанцев ни их очевидным техническим превосходством, ни суеверием, гласившим, что Кетцалькоатль или другие боги ацтеков уничтожат местное население, ни союзами испанцев с племенами, угнетенными ацтеками или инками. История утверждает, что спровоцированные на сражение ацтеки свирепо нападали на испанцев и побеждали их. Однако в тот самый вечер, когда ацтеки изгнали испанских конкистадоров из города, который сегодня называется Мехико, убивая многих из них и преследуя остальных, разразилась эпидемия оспы. Пока она свирепствовала в городе

, массово заражая не защищенных от нее ацтекских воинов, добавился еще и психологический аспект. Ацтеки видели, что испанцы, сражавшиеся под защитой христианского бога, не были подвержены этому новому недугу, в то время как ацтекские боги не спасали своих воинов, и это еще больше деморализовало коренное население. Ацтеки не могли знать, что для Европы в то время оспа была эндемична (свойственна местности) и что в Испании многие ею уже переболели и приобрели иммунитет – сопротивляемость последующему заражению этим вирусом. Потрясенные ацтеки объясняли смерть от оспы своих соплеменников, в то время как она обходила испанцев стороной, тем, что христианский бог могущественнее их местных богов. Таким образом, первым прямым следствием массового инфицирования оспой стали порабощение и последующая эксплуатация коренных американцев и мексиканцев испанцами. Вторым и более продолжительным эффектом стало уничтожение местной культуры; по мере того как испанская культура становилась доминирующей, миллионы туземцев обращались в христианство. За период испанского завоевания Нового Света от заражения вирусами кори и оспы погибло примерно от 1/3 до 1/2 коренного населения.

Вдобавок к стимулированию укрепления позиций христианства в Мексике и Латинской Америке, вирусы сыграли роль и в увеличении торговли рабами из Африки на территории обоих американских континентов. Коренные африканцы были относительно устойчивы к вирусу желтой лихорадки, тогда как белое население и коренные американцы были намного более подвержены этому заболеванию. Из-за смерти большого числа туземцев от желтой лихорадки для выполнения тяжелой работы на полях и в шахтах осталось слишком мало работников. Тогда испанцы стали привозить рабов-африканцев в качестве замены рабочей силы

. В результате ввоз рабов-африканцев в Новый Свет

значительно увеличился. Ирония была в том, что вирус желтой лихорадки изначально был привезен из Африки на борту торговых и рабовладельческих судов.

Помимо Испании свои права на колонии на американских континентах заявляли и другие европейские страны. Французы колонизировали Гаити и, учитывая, что африканцы устойчивы к вирусу желтой лихорадки, а значит, будут более надежными работниками, использовали на своих плантациях в основном рабочую силу из Африки. Вирус желтой лихорадки был родом из африканских джунглей, и в Новый Свет его принесли африканские рабы. Он отомстил, вновь изменив историю человечества, когда рабы взбунтовались в самом начале XIX века. Для подавления восстания Наполеон послал на Гаити более 27 000 ударных войск. Очень скоро большинство французских солдат умерли от желтой лихорадки, впервые столкнувшись с этим вирусом, переносимым москитами. Такая огромная потеря военных сил, необходимых Наполеону для поддержания статуса-кво, повлияла на его решение не рисковать еще бо?льшим числом войск, нужных для защиты других французских территорий в Новом Свете. Привело это к переговорам о продаже Территории Луизиана Соединенным Штатам

.

Англия также колонизировала большие части Северной Америки, включая те, которые должны были стать первыми Соединенными Штатами и Канадой. Во время Войны за независимость американское колониальное правительство отправило армию для того, чтобы вырвать Канаду из-под власти англичан. Захватив Монреаль, колониальная армия, превосходившая противника по численности, двинулась на Квебек. Но тут в лагерь Колониальной армии вошла оспа. Вскоре после этого обескровленные американские войска

, похоронив своих сослуживцев умерших в братских могилах, в беспорядке отступили от города. Таким образом, включение Канады в состав Соединенных Штатов было сорвано.

Более масштабная картина возникает из-за последствий инфекций, вызванных вирусами оспы, кори и желтой лихорадки. Некоторые историки связывают богатства Испании в Новом Свете с ее изначальным доминированием в Европе. Тем не менее последующее резкое падение влияния Испании на европейскую политику приписывается именно сокровищам, приобретенным ею в Америках. Считается, что обретенное благополучие способствовало появлению праздного населения, не спешившего принимать участие в индустриальной революции. Ситуация могла сложиться совершенно иначе, не будь туземцы столь уязвимы перед болезнями, принесенными им испанцами. Вмешательство вирусов привело к тому, что США и Канада так и не объединились. Более того, вирусы, способствовавшие приобретению Луизианы, позволили США увеличить свою территорию путем беспрецедентной экспансии на запад материка, не спровоцировав при этом потенциального геополитического конфликта с Францией. Последствия вирусной инфекции согнали туземцев Южной, Центральной и Латинской Америк с их исконных земель и искоренили их культуры, на смену которым пришла европейская, несущая знамя христианства. Совершенствование транспортных перевозок и использование в Новом Свете все более и более ценных африканских рабов заполнило нишу, появившуюся из-за вирусов оспы, кори и желтой лихорадки, заметно сокративших коренное население.

Кто мог представить в то время, что древние напасти человечества – оспа и корь – будут в конце концов побеждены? Оспа, в десятки раз уменьшив древнее население будущей Мексики, все еще продолжала убивать: к примеру, до начала 1940-х годов этот вирус ежегодно уносил в Мексике более 10 000 жизней. И все же сегодня она ликвидирована не только в Мексике, но и во всем мире благодаря программам вакцинации, что является одним из исключительных достижений в медицине и общественном здравоохранении. Элиминация вируса кори должна быть целью системы здравоохранения. Однако уничтожить этот вирус пока не удается – возможна лишь профилактика. Корь больше не представляет опасности в большинстве промышленно развитых стран, где вакцинация проводится или должна проводиться регулярно и повсеместно. В 1970 году вирусом кори заразились примерно 130 миллионов человек, умерли 8 миллионов. Сегодня в развитых странах случаи заражения корью очень редки: они встречаются в основном там, где распространены отказы от вакцинации. В США в 1970 году было объявлено о 47 000 случаях заражения корью, а в 2017-м – о 118. Больше всего заражений происходит в слаборазвитых странах третьего мира. Например, только в Нигерии было инфицировано вирусом кори 16 033 человека, а скончались 86. Вирус чумы рогатого скота из семейства коревых вызвал серьезное заражение и потерю крупного рогатого скота в Африке, приведя к экономическому упадку. Этот вирус был ликвидирован вакцинацией. Почему же не вирус кори?

По сравнению с вышеперечисленными, эпидемии вирусного полиомиелита появились относительно недавно: они были зафиксированы только в XIX столетии, при этом в XX веке число заболеваний возросло

. Одно время вирус полиомиелита был причиной каждой пятой смерти от тяжелых заболеваний в Швеции

. Угроза стать инвалидом в результате полиомиелита была одним из величайших страхов XX века. Никто не мог тогда предположить, что будет возможна профилактика полиомиелита или что его полная ликвидация, хоть еще не достигнутая, станет целью ВОЗ. Подобным же образом, благодаря вакцинации, вирус желтой лихорадки больше не вызывает такого ужаса и опустошения, как когда-то. Подобные успехи медицины демонстрируют, чего можно добиться, когда ученые-медики и правительственные организации сотрудничают и вместе используют свои ресурсы для решения проблем здравоохранения.

В противовес этим вирусам, уже укрощенным благодаря инновациям в сфере здравоохранения, возникли новые эпидемии пугающих размеров. Хотя сообщается, что ВИЧ заражено 50 миллионов человек, и при этом примерно 37 миллионов живут со СПИДом, спасительной вакцины от него не существует. Впечатляет то, что препараты, созданные и используемые сейчас для лечения ВИЧ/СПИД, значительно снизили уровень смертности, так что вполне вероятно, что жизнь инфицированных, получающих такие лекарства, продлится положенный срок. Однако совсем вывести этот вирус из организма все еще невозможно, так что инфицированные по-прежнему могут передавать ВИЧ и СПИД.

Среди других появившихся эпидемий SARS унес тысячи жизней в XXI веке. Распространившись из Китая до Торонто в Канаде, эпидемия этого вируса привела к изоляции города и к тому, что медицинские службы / службы здравоохранения оказались перегружены. Геморрагические лихорадки стали грозой второй половины XX столетия. Многие стали жертвами возбудителей Эболы, хантавируса и Ласса – вирусов геморрагических лихорадок, зафиксированных на всех континентах и демонстрирующих пугающий уровень смертности. Сегодня даже сами названия этих заболеваний вызывают такой же страх, как возникавший когда-то при упоминании оспы, желтой лихорадки и полиомиелита. Еще один вирус, никогда раньше не проявлявшийся в США, возник в Куинсе и Нью-Йорке в 1998 году, сначала поразив птиц, а затем и людей. Этот вирус, известный как вирус Западного Нила, впоследствии распространился по всей территории США, Канады, Мексики, а также Карибским островам, Центральной и Южной Америке, убивая тысячи людей на своем пути. Вспышки вируса Зика 2013 и 2014 годов, не дав исследователям-инфекционистам расслабиться, были впервые зафиксированы на нескольких тихоокеанских островах, включая Французскую Полинезию и Таити. К маю 2015 года Бразилия первой среди государств обеих Америк сообщила о вспышке лихорадки Зика. Вирус быстро распространился на Карибские острова, а потом и на Соединенные Штаты. В 2017 году в Бразилии было отмечено более 17 000 заболевших, в США – 452, из них 437 (97 %) оказались туристами, вернувшимися из зон заражения. У 7 % младенцев, подвергшихся воздействию вируса Зика, выявлены врожденные отклонения. Особенно часто это случается, когда заражение происходит на ранних сроках беременности. Ожидается, что и еще одна напасть из прошлого, вызванная разновидностью вируса гриппа, убившего более 50 миллионов человек в 1918–1919 годах, – больше, чем погибло в Первую мировую войну – может вернуться в своем прежнем виде или в новой вариации, в виде так называемого птичьего гриппа. При птичьем гриппе главный белок человеческого вируса гриппа – гемагглютинин, существующий в трех видах, заменяется не содержащим его вирусным белком птиц, у которого известно 15 разновидностей. И последней в этом списке стоит вызывающая панический страх угроза нового заражения говядины коровьим бешенством, которое может вызывать деменцию у людей. Вероятность этого или того, что болезнь достигнет размеров эпидемии, тем не менее сомнительна. Маловероятно, что возбудитель болезни будет идентифицирован как вирус. Однако тот факт, что прионы изначально считались вирусами, кажется мне достойным включения в данное издание книги.

Чтобы помочь читателю разобраться в том, как обнаруживали эпидемии в прошлом и потом побеждали их вопреки многочисленным трудностям, следующие две главы вкратце описывают основные принципы действия вирусной инфекции и ее протекание. В главе 2 дается определение вируса и объясняется, как он реплицирует и как вызывает заболевание. В главе 3 рассматривается то, как иммунная система человека борется с вирусами, либо спонтанно ликвидируя инфекции, либо получив стимул к предотвращению вирусных заболеваний при помощи вакцинации. Интересующимся иммунологией и вирусологией рекомендуются к прочтению главы 2 и 3. В противном случае читатель может сразу перейти к главе 4. Изучение жизненного цикла вируса и понимание того, как вакцины задумывались и разрабатывались, помогает объяснить, почему так трудно создать вакцину от ВИЧ и какие шаги необходимы для успешного сражения с вирусными инфекциями и их искоренения. Баланс сил между любым вирусом и организмом-хозяином, который он инфицирует, отражает соотношение между силой вируса, или его вирулентностью, и сопротивляемостью (резистентностью), или восприимчивостью организма-хозяина.

Читатели познакомятся с ведущими «охотниками за микробами», сражавшимися с вирусами оспы, кори, желтой лихорадки, полиомиелита и гепатита; с вирусами лихорадок Ласса, Эбола; с хантавирусом, вирусами SARS, MERS, Западного Нила, Зика, ВИЧ, гриппа и губчатой энцефалопатии. История вирусов и вирусологии – это еще и история тех мужчин и женщин, которые сражались с этими болезнями. Победа и профилактика любого заболевания требуют усилий множества людей. Тем не менее история признает героями лишь некоторых, прославившихся благодаря идентификации, выделению или излечению вирусных инфекций. Часть книги посвящена изучению научно-исследовательской работы медицинских исследователей, связавших в итоге определенные заболевания с конкретными вирусами, благодаря чему они были взяты под контроль. Но ученые-вирусологи – тоже люди, поэтому между ними неизбежны конфликты. Некоторые из этих эпизодов также включены в повествование.

История вирусологии была бы неполной без описания политических акций и предрассудков, спровоцированных вирусами и вызванными ими заболеваниями. К примеру, в США в 1878–1879 годах во время эпидемии желтой лихорадки вооруженные граждане и милиция попытались остановить толпы перепуганных людей, стремившихся бежать из Мемфиса; в 1916 году во время эпидемии полиомиелита в Нью-Йорке не давали уезжать из города тем, кто бежал от болезни; в 1995 году в Заире[5 - В 1960 году колония Бельгийское Конго получила независимость и офицальное название «Республика Конго», но уже в 1964 году страна была переименована в Демократическую Республику Конго (ДРК), чтобы избежать путаницы с названием соседнего государства Конго (бывш. Французское Конго). В период диктатуры Мобуту (1971–1997) страна носила название Заир. С 1997 года – вновь Демократическая Республика Конго. – Прим. изд.] была предпринята попытка помешать населению, стремившемуся спастись от лихорадки Эбола, покинуть город Звитеба. Таким образом, в полотно истории вирусных эпидемий оказываются вплетенными человеческие страхи, предрассудки и невежество.

В то время, когда корь и полиомиелит исчезали в таких странах, как США и Великобритания, возникало равнодушное отношение к вакцинации, в основном среди тех, кто никогда не наблюдал разрушительных последствий этих вирусных заболеваний. Более того, возникли организации, единственной целью которых является отказ от вакцин. Под влиянием этой дезинформации родители, принимающие участие в движении против вакцинации, подвергают опасности не только своих, но и других детей, потому что дети часто заболевают и передают инфекцию товарищам по играм, одноклассникам и близким. Это, в свою очередь, повышает вероятность того, что возбудители этих инфекций вернутся и снова нанесут колоссальный урон.

И наконец, стоит напомнить, как даже граждане США, сумевшие объединиться в «крестовом походе» против полиомиелита, погрязли в полемике о том, как облегчить вызванные ВИЧ страдания и остановить его распространение. Хотите верьте, хотите нет, но подобное отсутствие поддержки со стороны промышленно развитых стран мира, включая и Соединенные Штаты, в свое время помешало осуществить планы по ликвидации оспы

, а позднее привело к тому, что превентивные меры в начале эпидемии Эбола 2013–2016 годов

оказались слишком запоздалыми и ничтожными.

Глава вторая. Введение в основы вирусологии

Биолог Питер Медавар, получивший Нобелевскую премию по медицине и физиологии в 1960 году, дал следующее определение вирусам: «Вирусы – плохие новости, упакованные в белковую оболочку»

. И действительно, вирусы – не что иное, как крохотная частица генетического материала – один-единственный вид нуклеиновой кислоты (сегментированной или несегментированной, ДНК или РНК) – и оболочка, состоящая из молекул белка. Вирусы размножаются в соответствии с информацией, содержащейся в их нуклеиновой кислоте. Все остальное, кроме ДНК или РНК, неважно и служит главным образом для того, чтобы вирусная нуклеиновая кислота попала в нужное место в нужной клетке организма, в которую вирус внедряется. Не захватив живую клетку, вирусы не могут размножаться. Вирусы, однако, способны проникнуть в любую клеточную форму жизни, от растений и животных до бактерий, грибов и простейших. Вместе вирусы, растения и животные образуют три основные группы, охватывающие все живое. В отличие от животных и растений, состоящих из клеток, вирусы лишены клеточных мембран и поэтому являются паразитами, размножение которых зависит от клетки, которую они инфицируют.

По сравнению с другими организмами, вирусы имеют относительно мало генов. Геномы вирусов кори, желтой лихорадки, полиомиелита, лихорадок Ласса и Эбола, хантавирусов, а также ВИЧ представлены менее чем 10 генами, в то время как вирусы оспы и герпеса могут содержать 200–400 генов. Для сравнения, у бактерий – 5000–10 000 генов, а у человека – примерно 25 000.

Существует мнение, что нуклеиновая кислота вирусов образовалась из генов здоровых клеток. Посредством мутационных изменений, реассортаций и рекомбинаций вирусы затем смогли создать свои собственные генетические структуры. (Рисунок 2.1.) Возможно, некоторые вирусы оставались внутри исходного хозяина, из которого они развились и с которым находились в симбиозе или в близких к симбиозу отношениях. Но по мере того, как вирусы переходили от одного вида к другому или мутировали и образовывали новые генные комбинации, некоторые из этих прежде симбиотических вирусов достигали высокого уровня вирулентности. Исследователи подозревают, что вирус собачьей чумы или чумы рогатого скота у овец мог перейти к другому виду и проникнуть в человеческий организм, в котором они прошли достаточное количество мутаций, став в результате вирусом кори. Эта концепция постулируется из-за того, что геномные последовательности вирусов собачьей чумы, чумы рогатого скота и кори имеют между собой больше общего, чем геномные последовательности других вирусов. Такая взаимосвязь между этими тремя вирусами, скорее всего, возникла в период, когда большие группы людей жили в непосредственной близости от домашних животных. Похожая ситуация способствовала проникновению обезьяньих вирусов в организм человека, где они эволюционировали в вирус ВИЧ, вызвавший СПИД.

Вирус, переносимый обезьянами в организме, однако, не вызывает заболевания. Таким образом, каждый раз, когда он сталкивается с незнакомым организмом, вирус может пройти многочисленные мутации и превратиться в штамм, который вызовет новое и тяжелое заболевание. Например, вирус человеческого гриппа содержит один из трех вирусных гемагглютининов, которые являются внешними гликопротеинами вируса, служащими для того, чтобы прикрепляться к молекулам на поверхности клетки(-ок) хозяина. Обозначенный H1, H2 или H3, гемагглютинин (H) вируса человеческого гриппа может быть вытеснен птичьим гемагглютинином, к примеру H5 у птиц, что приведет к заболеванию, известному нам как птичий грипп. Два внешних белка (гликопротеина) на поверхности вируса гриппа – это H и нейраминидаза (N). Заразные для некоторых птиц, вирусы птичьего гриппа H5 и H7 сейчас впервые инфицировали человеческий организм, приведя к высокой смертности среди первых зараженных и госпитализированных. Штаммы птичьего гриппа H5 и H7, опасные для человека, еще не передаются легко от одного заболевшего к другому, но если вдруг такое произойдет, вполне может разразиться новая пандемия гриппа. Существует и другая вероятность. Кроме H1, H2, H3, H5 и H7 птичий грипп содержит еще 11 молекул гемагглютинина, обладающих способностью заменять человеческий гемагглютинин. Несколько исследователей – хотя их опыты и вызывают множество споров – в качестве эксперимента изменили геномы гриппа или последовательности вирусных геномов, чтобы понять, появляются ли у них новые функции или теряются уже имеющиеся. Положительной стороной этих исследований является возможность предсказывать новые опасные вспышки заболевания и подготавливаться к ним; отрицательной – вероятность создания нового вируса гриппа, вируса-Франкенштейна, который сможет вызвать пандемию. Разумеется, подобные исследования проводятся в строго охраняемых закрытых лабораториях.

РИСУНОК 2.1. Вирусы отличаются друг от друга образом жизни. В процессе развития у них появились различные формы и размеры для размещения генетического материала. Здесь в масштабированном виде сравниваются вирусы, обсуждаемые в данной книге. Они варьируются от самого маленького, полиомиелита, до самого большого – вируса оспы

Чтобы сохраняться и размножаться в природе, вирус должен пройти несколько этапов. Во-первых, ему нужно найти способ проникнуть в подходящую клетку-хозяина. Вирус вступает в контакт с клеткой, которую он будет инфицировать, а затем прикрепляется к рецептору на ее поверхности. Основная функция плазменной мембраны, или внешней «кожи», содержащей ядро клетки, – защита клетки от проникновения в нее вирусов. И все же вирусы часто проходят через эту оболочку со своими вспомогательными белками и генетическим материалом в цитоплазме (внутренней среде) клетки. Затем вирусы проникают внутрь самой клетки, что приводит к сбрасыванию или удалению внешней оболочки вируса. После этого вирус использует благоприобретенную стратегию для экспрессии своих генов, репликации своего генома и собирает свои составляющие (нуклеиновые кислоты и белки) в многочисленные копии, или потомство. По завершении этой последовательности готовые вирионы – вирусные частицы, сформировавшиеся в процессе репликации, – покидают инфицированную клетку. Процесс этот называется почкованием. В некоторых случаях вирус, произведя многочисленное потомство, убивает инфицированную клетку, больше не нуждаясь в ней для создания следующего поколения.

Обычно прикрепление вирусов к клетке и проникновение внутрь нее зависит от функций самой хозяйской клетки и от свойств конкретных вирусных генов. На поверхности клетки находятся рецепторы, к которым вирус, зацепившись за них, прикрепляется при помощи специально развившихся для этого белков. После того как прикрепление завершится, клетка также должна обеспечить вирусам механизм проникновения и путь, по которому они будут проходить внутрь клетки (в ее цитоплазму или ядро), где они смогут реплицироваться.

Как описано выше, первым шагом в инфицировании хозяйской клетки является прикрепление вирусного белка (точнее, последовательности аминокислот в данном белке) к одному из ее рецепторов. Уникальное распределение некоторых рецепторов и либо их наличие только на ограниченном числе типов клеток, либо, наоборот, их большой диапазон, присутствующий на самых разных видах клеток, диктует количество порталов для внедрения вирусов в клетку. Более того, тяжесть болезни, которую может вызвать вирус, распределение инфицируемых зон (органов, тканей, клеток) в хозяйском организме, а также его способность к выздоровлению определяются типом клетки с такими рецепторами и/или ее способностью реплицировать данный вирус. Например, заражение/уничтожение невосполнимых нейронных клеток в центральной нервной системе (ЦНС) или жизненно важных клеток сердца представляет чрезвычайную угрозу для организма. Намного менее опасно поражение клеток кожи, не являющихся столь критичными для выживания и легко заменяемых.

В качестве примера клеточного рецептора можно привести кластер дифференцировки 4 (CD4), изобилующий на поверхности некоторых лимфоцитов (белых кровяных телец), выделяемых тимусом – зобной, или вилочковой, железой, (CD4

T-клетки). Молекулы этого типа присутствуют, правда, не в таком количестве, и на моноцитах/макрофагах (макрофаги – клетки, сражающиеся с инфекцией, активированная форма моноцитов) в крови и на определенных тканях человеческого тела. Молекула CD4 вместе с конкретными молекулами-хемокинами (сигнальными молекулами, индуцирующими направленный хемотаксис – движение) является рецептором ВИЧ. Из-за того, что этот рецептор находится на относительно малом количестве типов клеток, которые ВИЧ может инфицировать, его вирусы атакуют лишь немногие зоны в человеческом организме

. И напротив, молекула CD46 – один из клеточных рецепторов вируса кори (в частности, для вакцинных штаммов вируса кори), наряду с другими рецепторами – SLAM, или CD150, сигнальной молекулой активации лимфоцитов и нектин-4, – присутствует на клетках многих видов

. CD46 обнаруживается на клетках эпителия, который покрывает большинство полостей в организме, включая нос, глотку, дыхательную/респираторную систему и кишечник; на эндотелиальных клетках, выстилающих кровеносные сосуды; на лимфоцитах/макрофагах и на нейронных клетках головного мозга. Молекулы SLAM находятся на клетках эпителия, эндотелия, нейронах, лимфоцитах/макрофагах и дендритных клетках; нектин – на клетках эпителия. Наличие этих рецепторов на таких клетках объясняет репликацию, тропизм, подавление иммунной системы и мозговые явления, проявляющиеся при коревой вирусной инфекции.

Помимо конкретных клеточных рецепторов, вирусы могут проникать в клетку и по-другому. Когда незнакомый агент, состоящий из чужеродных белков (антигенов) – такой как вирус, – внедряется в организм, защитная реакция хозяина вызывает создание антител, которые связываются с антигенами и нейтрализуют их. Благодаря тому, что антитела имеют форму, примерно напоминающую букву Y, они могут прикрепляться к антигену двумя способами: во-первых, своими «руками» (двумя верхними частями Y), при помощи которых они взаимодействуют именно с антигенами на поверхности клетки, используя место связывания (так называемое место связывания фрагмента антигена [Fab2]). Во-вторых, при помощи своей нижней части, известной как область F

, молекулы антител могут сцепляться с рецепторами (рецепторами F

) на определенных клетках. После того как антитела, произведенные иммунной системой в ответ на появление в организме-хозяине вирусных антигенов, объединяются с этими антигенами, образуется инфекционный комплекс «вирус – антитело»

. Прикрепившись к клетке с помощью рецептора F

, вирус может проникнуть в клетку как часть комплекса «вирус – антитело», даже если на поверхности клетки отсутствует подходящий для него рецептор.

Не все клетки, связавшиеся с вирусом и допустившие его внутрь себя, обладают подобающим механизмом для его репликации. Таким образом, прикрепление вируса к рецептору и проникновение его в клетку необязательно ведет к производству вирионов. Итак, подойдет ли конкретная клетка для размножения в ней вируса, зависит по крайней мере от трех факторов. Во-первых, на поверхности должен находиться функциональный рецептор. Во-вторых, в наличии должен быть конкретный вирусный белок, вернее, его пептидная последовательность, чтобы прикрепить вирус к рецептору клетки. В-третьих, клетка должна обладать необходимым механизмом, чтобы способствовать репликации вируса.

Следующий за прикреплением шаг, во время которого вирус может внедриться в клетку, – процесс активный и зависит от запаса энергии. Проникнуть внутрь за секунды после прикрепления вирус может, либо целиком пройдя сквозь плазменную мембрану клетки – процесс, известный как фагоцитоз (или, конкретнее, эндоцитоз), когда вирусная частица заключается в вакуоль или внутренний отсек клетки, – либо сливаясь с мембраной клетки своей внешней оболочкой. Попав внутрь клетки, вирус сбрасывает свой защитный белковый покров и высвобождает свой геном для репликации. За этой процедурой следует репликация вирусного генома, во время которой производство собственных белков хозяйской клеткой переключается на синтез новых вирионов. Чтобы произвести огромное количество своих собственных белков, вирусы должны развить стратегию, которая даст им преимущество для синтеза вирусных строительных материалов, а не строительных материалов клетки-хозяина. Вирусы добиваются этого, либо лишая клетку способности производить свои собственные белки, либо получив преимущество в выборе производимых клеткой материалов, переключив ее на производство именно вирусных компонентов.

Вирусы содержат либо РНК, либо ДНК и, соответственно, подразделяются на РНК- и ДНК-содержащие. РНК-содержащие вирусы – это единственные известные организмы, использующие РНК в качестве своего генетического материала. Они реплицируют свои РНК-геномы двумя уникальными способами: либо путем РНК-зависимого РНК-синтеза (это свойственно большинству РНК-вирусов, то есть кори, гриппу, полиомиелиту и т. д.), либо путем РНК-зависимого ДНК-синтеза, так называемой обратной транскрипции, за которой следуют интеграция ДНК в клеточное ядро, ее репликация и транскрипция (характерно для ретровирусов, таких как ВИЧ).

Важно то, что РНК-репликация – процесс, сильно подверженный погрешностям, так как у этого класса вирусов нет надежного механизма корректировки ошибок посредством удаления нуклеиновых кислот, претерпевших отклонения или мутации. У фермента (полимеразы), катализатора РНК-репликации, корректировочная активность минимальна. В результате уровень погрешностей у РНК-вирусов в 10 000 раз выше, чем у ДНК-содержащих вирусов (то есть герпесвирусов, оспы), чей корректирующий механизм удаляет отклоняющиеся от нормы вирусные ДНК во время ДНК-репликации. Таким образом, для эволюции, селекции и биологии РНК-вирусов последствия этого весьма значительны. Популяции клонов РНК-вирусов никогда не бывают гомогенны напротив, они представляют собой массу родственных РНК-последовательностей, группирующихся вокруг основной последовательности. Это множество обозначается как квазивиды и представляет собой плодородную почву для создания генетических вариантов, которые могут успешно реагировать на селективные сложности, такие, например, как при инфицировании хозяйского организма, резистентного к данному вирусу. В результате часть генетической композиции вируса может измениться в пользу вируса, обеспечивая ему преимущество в этом процессе, который включает постоянную репликацию, непрерывное продвижение и распространение. Таким образом, РНК-вирусы только эволюционируют до миллиона раз быстрее, чем ДНК-вирусы.

Высокая степень погрешности РНК-вирусов ограничивает их геномы в размере, то есть в количестве их генов. Различные РНК-вирусы могут содержать 4–10 генов; для сравнения, ДНК-вирусы (такие, как вирус оспы) имеют сотни генов. ДНК-вирусы, которым нужно относительно немного генов для репликации, несут с собой целый багаж многочисленных генов, которые обеспечивают им селективное преимущество. В этом багаже находятся дополнительные гены, не представляющие жизненной необходимости для репликации вируса, но важные для повышения его выживаемости и способности производить потомство. Следовательно, РНК-вирусам, несущим значительно меньше генов, чем ДНК-вирусы, приходится выполнять столько же задач, что и ДНК-вирусам, у которых генов множество. РНК-вирусы частично выходят из положения, кодируя белки для выполнения множественных задач. Для РНК-вирусов это разнообразие приводит к индивидуальности многочисленного потомства, а также к потере многих вирусов из всей их массы из-за летальных вирусных мутаций. Преимущество РНК-вирусов состоит в быстрой эволюционной реакции.

<< 1 2 3 4 5 6 ... 12 >>
На страницу:
2 из 12

Другие аудиокниги автора Майкл Олдстоун