Оценить:
 Рейтинг: 0

Физиология и гигиена летчика в экстремальных условиях

Год написания книги
2019
Теги
<< 1 ... 10 11 12 13 14 15 16 >>
На страницу:
14 из 16
Настройки чтения
Размер шрифта
Высота строк
Поля
. Названная величина, являясь расчетной, есть не что иное как прирост ректальной температуры до 37,8–37,9°С (0,7–0,8°С) или увеличение средней температуры тела до 37,8°С, что практически повторяет вышеназванных авторов.

По нашим данным, прирост теплонакопления порядка 170 кДж/м

также соответствует 45–50 мин пребывания при 60°С и 80–90 мин при 45°С.

Учитывая, что в проведенных нами исследованиях ухудшение работоспособности наступало при отсутствии значимого прироста ректальной температуры, нельзя согласиться и с ранее рассмотренной точной зрения П. Ханкок (Hancock P. A., 1982), базирующейся на корреляционной зависимости ухудшения работоспособности от прироста ректальной температуры.

Статичность данных зависимости «степень теплового дискомфорта – уровень работоспособности», предлагаемых Л. Г. Головкиным с соавт. (1986) также не позволяют считать их достаточно обоснованными, хотя предложение авторов использовать теплоощущения человека как дополнительный критерий возможного ухудшения работоспособности согласуется с нашими данными (лимитирующий признак пребывания в неблагоприятных микроклиматических условиях).

Это подтверждают и данные изменения температуры тела и качества пилотирования тренажера в разное время суток, что было показано в наших исследованиях, проведенных с участием 12 испытателей. Так, суточные колебания ректальной температуры в диапазоне 0,6–1,0°С не сопровождались значительным изменением показателей работоспособности. Значения показателей САН, частоты сердечных сокращений и артериального давления имели акрофазу минимум в 4–5 часов утра (рис. 3.10).

Рис. 3.10 – Изменение активности, самочувствия (левый график), систолического и диастолического давления и частоты сердечных сокращений (правый график) в течение суток: С – самочувствие; А – активность; АД(с) – систолическое артериальное давление; АД(д) – диастолическое артериальное давление; ЧСС – частота сердечных сокращений

Следует подчеркнуть, что предварительная оценка локального перегрева головы позволила также установить, что на фоне отсутствия прироста ректальной температуры по мере перегревания головы отмечается ухудшение пилотирования тренажера (рис. 3.11).

Подтверждением ведущей роли изменения температуры кожных покровов, определяющей качество пилотирования тренажера, являются и материалы следующих двух разделов исследований.

Особенно наглядно это нашло подтверждение при работе человека-оператора в интермиттирующем режиме воздействия высоких температур в диапазонах: 60 и 24°С, 33 и 50°С, 24 и 33°С.

Рис. 3.11 – Динамика изменения ректальной температуры и качества управления в условиях общего (А) и локального (Б) режимов теплового воздействия: Т

– ректальная температура тела; ? – интеграл ошибки рассогласования

Таким образом, анализ существующих точек зрения не позволяет объяснить ухудшение работоспособности испытателей с первых минут пребывания в исследованных микроклиматических условиях. В то же время обращает на себя внимание, не столько отмеченный уже выше факт выраженного с первых минут воздействия прирост средневзвешенной температуры кожи (порядка 4–5°С), сколько характер ее соотношения с ректальной температурой. В частности, наиболее частой причиной увеличения средней температуры тела, теплосодержания, ректальной температуры у человека в обычных условиях жизнедеятельности является физическая нагрузка. При этом, имеющиеся сведения свидетельствуют, что физическая работа легкой и средней степени тяжести как в термонейтральных условиях, так и при высоких температурах (50°С при низкой относительной влажности) на фоне роста ректальной температуры сопровождается увеличением и СВТК, которая обычно на 3–4°С ниже ректальной. Предел невозможного дальнейшего выполнения физической работы в условиях высокой температуры преимущественно ограничивается временем, необходимым для их конвергенции (Pandolf R. B., 1978). Это объясняется тем, что в процессе онто- и филогенеза у человека мог закрепиться только подобный характер соотношения между ректальной температурой и средневзвешенной температурой кожи. Поэтому, вынудив человека-оператора противодействовать температурным условиям выше 45°С и тем самым внеся существенный разбаланс в так называемый «температурный образ» (Иванов К. П., 1990), интегрирующий в целях поддержания гомеостаза температуру кожи, крови, внутренних органов (ректальная температура, гипоталамуса), мы тем самым добились асимметрии эволюционно детерминированных взаимоотношений между Т

и СВТК, что, по нашему мнению, и нашло отражение в ухудшении выполнения тестовых задач, определяющих работоспособность человека-оператора с первых минут температурного воздействия.

Анализ полученных данных позволил определить синергический характер взаимодействия высокой температуры и операторской деятельности на максимально возможное время пребывания в неблагоприятных микроклиматических условиях. Обратный характер взаимодействия отмечается при выполнении физической нагрузки в условиях высокой температуры. Так, по данным А. А. Смирнова (Смирнов А. А., 1961), максимально переносимое время в покое при температуре 60°С (относительная влажность – 20–30%) равное 60 мин увеличивается до 75 мин (на 25%) при выполнении легкой физической нагрузки. Аналогичное взаимоотношение СВТК и ректальной температуры, полученное при выполнении физической работы средней степени тяжести при температуре 50°С А. И. Фрейнк (1982) объясняет тем, что выполнение физической работы, активизируя кожный кровоток, усиливает в 3–4 раза интенсивность потоотделения, что позволяет поддерживать СВТК на 3,0–3,5°С ниже, чем в покое, и, как следствие, пролонгировать уже отмечавшейся выше конвергенции ректальной температуры и температуры кожи.

Сказанное позволяет заключить, что широкое использование в модельных экспериментах динамической физической нагрузки различной степени тяжести для получения уровня энерготрат, характерных для летчиков (Ажаев А. Н., 1979) является, по-нашему мнению, недостаточно адекватной моделью для изучения теплового состояния человека-оператора (летчика), у которого побудителем увеличения уровня энерготрат на различных этапах выполнения полетного задания является нервно-психическая (эмоциональная) и интеллектуальная нагрузки. А с учетом того, что для летной деятельности более характерна отрицательная физическая работа, соответствующая в физиологическом смысле сокращению мышц изометрического типа, еще раз можно подчеркнуть недостаточную адекватность используемых положительных физических нагрузок теплового состояния организма для имитации изменений степени тяжести летного труда. Это, по-нашему мнению, обусловлено тем, что при статической работе (от 117 до 440 Вт), по сравнению с динамической, при равном потреблении кислорода пульс был на 10 уд/мин чаще, а СВТК на 3°С выше, что отмечено и нами при выполнении задач операторского профиля.

В заключение необходимо остановиться на возможных причинах существенных различий, полученных в наших исследованиях и в исследованиях А. Н. Ажаева с соавт. (Ажаев А. Н., Зорилэ В. И., 1980, Ажаев А. Н., Зорилэ В. И., 1988). Сравнительный анализ в качестве ведущих причин позволяет выделить следующие: 1) общая продолжительность загрузки испытателей решением задач операторского профиля, составившая 70–80% времени против 16–20% у А. Н. Ажаева с соавт. (Ажаев А. Н., Зорилэ В. И., 1980); 2) более интенсивное воздействие радиационного тепла в кабине разработанного нами стенда-тренажера РДМ-2 по сравнению с РСБК, что объясняется более чем 3–4-кратным различием расстояния нагретых металлических поверхностей от тела оператора; 3) различия в используемых комплектах одежды. В частности, использование в наших экспериментах защитного шлема (ЗШ) приводило к опережающему «дискомфорту» области головы, что в целом и явилось лимитирующим дальнейшее пребывание при 45°С и 60°С признаком, несмотря на различие по другим показателям теплового состояния. Неблагоприятное влияние ЗШ на функциональное состояние организма объясняется, по-нашему мнению, во-первых, отсутствием теплоотдачи за счет потоотделения с поверхности головы, способного отводить до 30% теплонакопления (Shvartz E., 1970), во-вторых, вторичным, в условиях существенного нагрева металлических частей ЗШ, радиационном излучении в непосредственной близости от волосистой части головы.

Таким образом, результаты проведенных исследований позволяют заключить, что при изученных уровнях температурных воздействий, характерных для условий микроклимата на рабочих местах летчиков возможно ухудшение психофизиологического состояния человека, определяющего его уровень работоспособности. Поэтому практически с первых минут пребывания в названных условиях следует ожидать ухудшение работоспособности летного состава, выполняющего полеты в жаркий период года.

Сравнительный анализ объективно регистрируемых параметров качества выполнения деятельности по отношению к значениям субъективной оценки испытателей степени ухудшения выполнения задач, свидетельствует о достоверности последней только в случае выраженного ухудшения работоспособности или самочувствия. Вследствие этого результаты анкетного опроса летчиков, если и можно использовать, то только как ориентировочные, так как в ряде случаев они часто были завышенными по отношению к реальным значениям.

Выявленные изменения в структуре психофизиологического состояния человека-оператора, подвергающегося воздействию высоких температур, обладают достаточной информативностью и, наряду с общепринятыми критериями теплового состояния, могут быть использованы при оценке средств индивидуальной защиты летчика от воздействия высоких температур, изыскания средств и методов прогноза тепловой устойчивости человека-оператора, определения эффективности методов повышения тепловой устойчивости человека-оператора. При этом, учитывая однотипный характер изменения психофизиологического и теплового состояния человека-оператора при обоих видах тепловых воздействий, в дальнейших исследованиях в качестве тестовой тепловой нагрузки мы сочли возможным использовать температуру, равную 60°С. Предпочтительность последней, наряду с ее достаточной информативностью, определяется меньшим временем необходимым для ее проведения, что имеет немаловажное значение при осуществлении массовых тестовых нагрузок. Большая эффективность апробированной нагрузки перед ранее используемыми положительными физическим нагрузками нашла достаточное подтверждение также при сравнительной оценке распределения тепла при пребывании испытателей в состоянии покоя.

Таким образом, результаты проведенных исследований позволяют заключить, что:

1) снижение работоспособности человека-оператора при температуре окружающей среды 45 и 60°С и влажности 10–15% отмечается при незначительных физиологических изменениях;

2) ведущим показателем снижения работоспособности при изученных микроклиматических условиях является превышение температуры кожных покровов над ректальной температурой, нарушающее баланс «температурного образа» интегративных систем организма человека-оператора;

3) выявленные изменения в структуре психофизиологического состояния человека-оператора обладают достаточной информативностью и наряду с общепринятыми критериями теплового состояния могут быть использованы в гигиене труда человека, работающего в условиях воздействия высоких температур.

3.4. Определение влияния воздействия высоких температур на человека-оператора в интермиттирующем режиме

Данное направление исследований представляет научный и практический интерес. С научной точки зрения использование переменного выполнения работы в условиях высоких (50°С и 60°С) и комфортных (относительно дискомфортных температур – 33°С) могло бы объективизировать и более наглядно подтвердить или опровергнуть факт ухудшения качества выполнения деятельности в условиях воздействия высоких температур. С практической точки зрения в реальной авиационной практике наиболее часто встречается именно такой режим тепловой нагрузки на летный состав.

Исследования выполнены с участием 10 испытателей, проведено 3 серии исследований. В первой серии испытатели работали 3-кратно по 30 минут при температуре 24°С и 60°С, во второй – по 40 минут при 33°С и 50°С, в третьей – по 40 минут при 24°С и 33°С.

Результаты выполненных исследований суммированы на рис. 3.12.

Рисунок 3.12 – Динамика изменения средневзвешенной температуры кожи (Т

), ректальной температуры тела (Т

) и качества управления на тренажере (?к) при интермиттирующем воздействии высоких температур различной направленности

На рисунке видно, что несмотря на относительно линейный прирост ректальной температуры во время работы при 24–60°С и 33–50°С и отсутствие такового при 24–33°С, динамика изменения качества деятельности практически полностью повторяет динамику изменения средневзвешенной температуры кожи. Так, переход из кабины, в которой поддерживались относительно комфортные условия, в условия тепловой нагрузки, равные 60°С, на фоне прироста средневзвешенной температуры кожи отмечается ухудшение точности пилотирования тренажером. После окончания выполнения деятельности в условиях 60°С и перехода в кабину, в которой температурные условия соответствовали 24°С, снижение температуры кожи сопровождалось практически полным восстановлением качества операторской деятельности. Ректальная температура после перегревания при 60°С в относительно комфортных условиях в течение 10–12 минут нарастала и затем в последующий 20-минутный период наблюдения снижалась до финальных значений пребывания в условиях воздействия высоких температур. Все сказанное свидетельствует о том, что и в этой серии исследований не подтвердилась зависимость точности выполнения операторской деятельности от уровня прироста ректальной температуры.

Исследования, выполненные при переменном режиме воздействия температур в диапазоне 33–50°С и 24–33°С привели к неожиданным результатам. В частности, материалы, полученные в обеих сериях исследования, свидетельствуют о том, что важна не конкретная цифра прироста температуры кожных покровов, а вектор изменения кожных температур.

Так, при переходе из комфортных условий в условия, соответствующие 50°С, качество деятельности как и в предшествующей серии исследований при 60°С повторяет динамику изменения средневзвешенной температуры кожи. Однако, если в предшествующей серии в 24°С последняя практически восстанавливалась до исходного уровня, то во второй серии при 33°С температура кожи не снижалась ниже 35°С, а работоспособность нормализовалась и даже улучшалась по сравнению с фоновыми данными.

Таким образом, результаты выполненных исследований подтвердили значимость изменения температуры кожных покровов для качественного выполнения операторской деятельности. При этом применительно к реальным условиям риск снижения точности пилотирования летчиком в большей степени вероятен при снижении и заходе на посадку, когда отмечается рост температуры в кабине летательного аппарата и, соответственно, температуры кожных покровов.

Глава 4. Установление дифференцированных нормативов температуры воздуха для кабин летательных аппаратов

Вопросы гигиенического нормирования факторов окружающей среды занимают ведущее место в профилактической медицине (Измеров Н. Ф., Капцов В. А., 1993, Измеров Н. Ф., Саноцкий И. В., 1976, Карнаух Н. Г., Шабленко С. М., 1983, Terano T., 1982).

В качестве основных методологических подходов при разработке гигиенических регламентов факторов производственной среды гигиенисты опираются на следующие принципы (Власов В. В. 1994, Кустов В. В., Тиунов Л. А., 1975, Методические рекомендации, 1983):

• пороговость действия всех факторов при соответствующих критериях вредности;

• установление безопасных уровней воздействия;

• ориентация на медицинские показатели, а не на техническую достижимость или экономическую целесообразность установления гигиенических нормативов;

• законодательный характер гигиенических нормативов.

Наряду с названными подходами, при разработке гигиенических нормативов применительно к конкретным физическим или химическим факторам производственной среды используются также специфические методические принципы, обусловленные особыми свойствами нормируемого фактора.

Так, при гигиеническом нормировании микроклимата производственных помещений основными принципами являются:

• оценка метеорологических условий по абсолютным величинам температуры, относительной влажности и подвижности воздуха (принцип раздельного нормирования компонентов микроклимата);

• оценка воздействия на организм человека комбинации метеофакторов с учетом категории тяжести выполняемой работы, и на этой основе установление допустимых пределов параметров микроклимата для легкой, средней тяжести и тяжелой работы;

• учет адаптации и акклиматизации человека к климатическим условиям и сезонам года, что обуславливает дифференцированность переходного и теплого периодов года.

Наличие существенных особенностей, отличающих объекты военной техники от промышленных предприятий, а также характер учебно-боевой работы личного состава Вооруженных Сил, требует творческого подхода в применении общих принципов гигиенического нормирования физических и химических факторов, определяющих условия обитаемости военно-технических объектов. В полной мере это относится и к микроклимату, как одному из ведущих факторов обитаемости.

В свете сказанного, специалистами военной гигиены сформулированы положения о динамическом, дифференцированном, многоуровневом, комплексном нормировании факторов обитаемости (Медведев В. И., 1974).

Динамическое нормирование предполагает определение величины нормируемого показателя в зависимости от длительности воздействия фактора, частоты воздействия, соотношения интервалов действия с длительностью периодов отсутствия воздействий и так далее.

<< 1 ... 10 11 12 13 14 15 16 >>
На страницу:
14 из 16