Оценить:
 Рейтинг: 0

Теорема зонтика, или Искусство правильно смотреть на мир через призму математики

Год написания книги
2019
Теги
<< 1 2 3 >>
На страницу:
2 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля
Его влияние настолько велико, что мы подчиняемся ему, даже не осознавая этого. Люди, которые устанавливают цены в магазинах, не договариваются друг с другом и едва ли слышали о Фрэнке Бенфорде. И все же, неосознанно, словно ими манипулирует неподвластная им сила, они подчиняются его закону. Как и население стран, длины рек и диаметры планет.

В 1938 году Фрэнк Бенфорд назвал это распределение «законом аномальных чисел». Тем не менее этот закон настолько распространен, что такое название кажется неуместным. Аномальность субъективна и существует только в умах людей, которые ей поражаются. Природа, напротив, кажется, находит этот закон универсальным. Закон аномален только до тех пор, пока мы его не поймем. И мы намерены его понять.

Но в каком направлении двигаться? Как направить наши мысли, чтобы приоткрыть завесу тайны и понять аномалии?[5 - «Аномальными» Бенфорд назвал эти числа потому, что обнаруженные им корреляции не были идеально строгими – некоторые наборы данных на тот момент описывались этим законом лучше, некоторые – хуже. Сам Бенфорд считал, что его закон имеет ограниченное применение – только к тем числам, между которыми не имеется связующих закономерностей. Впоследствии этот закон начали называть просто «законом Бенфорда». – Прим. ред.]

Закон Бенфорда несложно понять, но его объяснение не уложить в несколько строк. Математика, которая скрывается за ним, проста, но глубока. Это не загадка, решение которой неожиданно приходит в голову, и мы восклицаем: «Ах! Вот, в чем дело, я понял!» Нам придется поменять наше понимание природы чисел и сам подход к счету. Если закон Бенфорда не кажется нам очевидным, то это потому, что мы неправильно думаем. Нам придется научиться по-другому смотреть на то, что нам кажется таким знакомым. Нам придется снова ставить под сомнения свои суждения.

Из экскурсии по миру, который только что нам открыл Фрэнк Бенфорд, мы вернемся другими. Его закон изменит вас. И когда вы его поймете, вы будете думать совсем иначе.

Мультипликативное мышление

Повседневность часто намекает, что мы плохо управляемся с числами. Что с нами – или с ними – что-то не так.

У меня есть небольшая история на эту тему.

Несколько лет назад на вечеринке, которую мы с друзьями посвятили играм, кому-то пришла в голову идея устроить научную викторину. Мы разбились на две команды и отвечали на вопросы из разных сфер: от математики и геологии до биологии и информатики. На каждый вопрос команда должна была дать приблизительный ответ в численном выражении, и та, чей ответ был ближе всего к верному, зарабатывала очко. Правило казалось довольно простым и ясным. И все же после нескольких раундов вопрос из области астрономии вызвал неожиданный спор.

Нас спросили, каково расстояние между Землей и Луной.

В нашей команде никто не знал точного ответа, но, поразмыслив, мы ответили, что оно составляет 800 000 км. В команде противника переговоры оказались куда более напряженными, но в конце концов они объявили свой ответ: 10 км!

Очевидно, в этой команде в астрономии разбирались еще хуже, чем в нашей. Высочайшая вершина Земли, гора Эверест, достигает в высоту почти 9 км. Если бы Луна находилась всего в 10 км от Земли, чтобы коснуться нашего спутника, достаточно было бы подняться на гору. Абсурдный ответ. Еще одно очко, казалось мне, у нас в кармане.

Тем не менее правильный ответ нас озадачил. Луна на самом деле находится на расстоянии 384 000 км от Земли. Таким образом, простое вычитание показало нам, что мы ошиблись на 416 000 км, в то время как команда противника ошиблась только на 383 990 км.

Я моргнул и посчитал еще раз. Ошибки не было. Признаться, я даже нацарапал небольшую схему на бумажной салфетке, чтобы окончательно убедиться.

Сомнений не было: их ответ был ближе к правильному, чем наш. Они победили. Несколько минут я пересчитывал и прокручивал расчет в голове, но ничего не поделаешь. Математика была категорична.

Но все же, вам не кажется, что эта ситуация несправедлива? Да, возможно я выгляжу, как человек, который не умеет проигрывать, но вы не думаете, что, несмотря на результат, наш ответ был более разумным, более продуманным и, в некотором смысле, менее неправильным, чем у другой команды?

Но почему в таком случае математика говорит об обратном? Почему расчеты показывают, что почти абсурдный ответ ближе к истине?

Или стоит задать вопрос немного по-другому: правильно ли мы понимаем математику, которой пользуемся? Математика не ошибается, но люди, которым она служит, иногда могут использовать ее ненадлежащим образом.

Если немного подумать, то можно представить множество подобных ситуаций. Рост кошки в среднем составляет 25 см, а лабрадора – 60 см. Некоторые бактерии достигают в длину одну тысячную миллиметра. Таким образом, можно утверждать, что по размеру кошка ближе к бактериям, чем к лабрадору. Разница в росте между кошкой и бактериями составляет около 25 см, а между кошкой и собакой – 35 см.

Но это заключение, к которому нас подводят числа, снова противоречит нашему естественному восприятию реальности. Кошка и собака принадлежат к одному миру. Они могут играть вместе или, по крайней мере, взаимодействовать. Они видят друг друга, чувствуют друг друга, они знают, что оба существуют. Но кошка, если, конечно, она не изучала науку, понятия не имеет о существовании бактерий. Они не являются частью ее мира, они настолько малы, что их невозможно ни увидеть, ни даже вообразить.

Можно привести еще несколько похожих примеров, которые кажутся интуитивно нелогичными, но все же математически точными. Температура на поверхности Солнца ближе к 5 °C, чем к 15 000 °C. Население Парижа ближе к населению деревни с 12 жителями, чем к населению Нью-Йорка. Если вы взвесите планету Марс, то обнаружите, что ее масса ближе к массе мячика для пинг-понга, чем к массе Земли.

Как и в случае с законом Бенфорда, эти ситуации ставят нас в логический тупик только потому, что мы думаем неверно. Потому что мы используем математический инструментарий, который плохо понимаем, в контексте, в котором он неуместен.

Как же тогда воплотить эти интуитивные размышления в математике? Ответ можно найти в тонком понятии порядка величины.

Сама идея простая, но невероятно мощная. Думать посредством порядка величины – значит думать с помощью умножения, а не сложения.

Если вы хотите сравнить числа 2 и 10, вы можете сделать это двумя разными способами. Путем сложения: сколько нужно добавить к 2, чтобы получить 10? В таком случае ответ 8. Или путем умножения: на сколько нужно умножить 2, чтобы получить 10? Тогда ответ равен 5. В первом случае разница между двумя числами получается путем вычитания: 10 ? 2 = 8. Во втором – деления: 10 ч 2 = 5.

Сказать, что два числа имеют одинаковый порядок величины, значит сказать, что они близки с точки зрения умножения.

Несмотря на то, что на первый взгляд эта идея кажется довольно странной, любой, кто начинает мыслить мультипликативно, то есть посредством умножения, быстро понимает, насколько этот подход лучше соответствует нашей интуиции.

Вернемся к нашей научной викторине. Вот как я мог бы отстоять нашу победу в игре, если бы тогда мыслил здраво. Луна находится на расстоянии 384 000 километров от Земли, а наша команда ответила, что на расстоянии 800 000 км, то есть примерно в два раза дальше. Если мы поделим числа, то окажется, что наш ответ был в 2,08 раза больше верного. Наши противники ответили, что расстояние составляет 10 км, то есть в 38 400 раз меньше правильного ответа! С этой точки зрения мы действительно победили. Более того, этот результат гораздо лучше соответствует нашему интуитивному восприятию мира.

Такой подход сработает и со всеми остальными примерами. Если считать мультипликативно, то размер кошки ближе к размеру собаки, чем к размеру бактерии, масса Марса ближе к массе Земли, чем к массе мячика для пинг-понга, население Парижа ближе к населению Нью-Йорка, чем к населению маленькой деревни, и так далее.

Когда мы сравниваем два числа, независимо от контекста, в котором происходит это сравнение, чаще всего мы интуитивно прибегаем к мультипликативному мышлению. Если в вашем супермаркете товар стоимостью 200 евро подорожает на 8 евро, то, несомненно, это подорожание вас расстроит, но гораздо меньше, чем если бы на те же 8 евро подорожал товар стоимостью 2 евро. В таком случае цена увеличивается до 10 евро, то есть в 5 раз! Расстроиться – это мягко сказано. И это при том, что номинально цены выросли на одну и ту же величину.

Таким подходом к сравнению мы обязаны не только работе интеллекта. Это не уникальное свойство мышления, он естественен для нас и моделирует большинство наших взаимодействий с миром. Наше чувственное восприятие окружающего мира тоже мультипликативно.

Если я завяжу вам глаза и вложу в одну руку предмет весом 10 г, а в другую – весом 20 г, вы сразу же поймете, какой из них тяжелее. Но различить «на ощупь» предметы весом 10 кг и 10 кг и 10 г куда сложнее. Однако разница в парах одинаковая: 10 г. Или, точнее, разница одинаковая с точки зрения сложения, или аддитивности, потому что с точки зрения умножения она вопиющая: 20 г в два раза тяжелее, чем 10 г. Во втором же случае разница между двумя массами составляет всего 0,1 %.

То же можно сказать и про наше зрение. Вы когда-нибудь пробовали включить свет средь бела дня? Если солнце уже заливает комнату, это почти ничего не меняет. Яркость кажется одинаковой независимо от того, светит лампочка или нет. Но если вы включите свет ночью, то ясно увидите, как он освещает самые темные уголки, которые мгновение назад терялись в полумраке.

Тем не менее днем лампочка излучает не меньше света, чем ночью. То есть с точки зрения сложения яркость одинакова в обеих ситуациях. Но наши глаза воспринимают эту яркость иначе – относительно, то есть мультипликативно. При дневном свете яркость лампочки незначительна по сравнению с яркостью Солнца. Ночью же все меняется – она правит бал.

Это справедливо и для остальных органов чувств: осязания, зрения, вкуса, слуха, обоняния. Подумайте хотя бы о том, как вы воспринимаете течение времени, преодоленное расстояние, и, что более субъективно, интенсивность эмоций, которые испытываете. Все эти чувства гораздо проще поддаются пониманию, когда вы начинаете думать о них мультипликативно, а не аддитивно.

Наше врожденное чувство чисел

Чтобы проверить ваше чувство чисел, я предлагаю вам небольшой эксперимент. Посмотрите на этот отрезок, на котором размещены два числа: тысяча и миллиард.

Теперь постарайтесь без раздумий, инстинктивно ответить на следующий вопрос: где на этом отрезке вы отметите миллион? Не бойтесь ошибиться, правильным будет любой ответ – важно узнать, как работает ваша интуиция с большими числами.

Итак, вы указали на отрезке точку, где, по вашему мнению, находится миллион. Давайте посмотрим, о чем нам это скажет.

Вероятнее всего, в поисках ответа ваш мыслительный процесс развивался поэтапно. Как только вы ознакомились с вопросом, ваш мозг интуитивно выдал ответ. Грубо и без анализа. Затем настал черед более сложных умозаключений. Вы вспомнили все, что знаете о числах тысяча, миллион и миллиард, и выбранная вами точка немного переместилась на отрезке. Или даже сильно переместилась. Влево или вправо? Вероятно, вы также приняли во внимание то, о чем мы говорили ранее. Возможно, вам показалось, что вопрос сформулирован не очень точно, что в нем есть какой-то подвох. Вы ответили на вопрос с точки зрения аддитивности или мультипликативности? Это что-то меняет в данном случае?

Каждый ответит на этот вопрос по-своему, но одна реакция будет превалировать – сначала представить миллион примерно на середине отрезка. Или немного левее середины, потому что заключить, что миллион ближе к тысяче, чем к миллиарду, можно достаточно быстро. Но по мере дальнейших размышлений над вопросом точка на отрезке будет смещаться левее, все ближе к тысяче.

Так в чем же дело? Прозвучит неожиданно, но миллион находится совсем рядом с тысячей. В заданном масштабе невооруженным глазом их даже не различить, и оба числа будут располагаться практически там же, где и ноль, если добавить на наш отрезок и его.

Конечно, в абсолютном выражении миллион – это большое число, но миллиард все же в тысячу раз больше! В таких масштабах даже миллион – это совсем немного. Если бы вы стояли в точке ноля, а миллиард находился в километре от вас, то миллион был бы от вас всего в одном метре, а тысяча – в одном миллиметре. А если взглянуть издалека, то покажется, что ноль, тысяча и миллион расположены в одной точке.

Тем не менее, как и в случае с расстоянием до Луны, математический вердикт интуитивно сложно принять. Если записать числа цифрами, миллион займет свою законную позицию посередине между тысячей и миллиардом.

Тысяча: 1000

Миллион: 1 000 000

Миллиард: 1 000 000 000

В миллионе на три нуля больше, чем в тысяче, и на три меньше, чем в миллиарде. Визуально, если мы уделяем внимание не самой величине числа, а длине его написания, у нас возникает откровенный соблазн поместить миллион в середину. Сама природа нашей системы счисления, как правило, заставляет нас думать мультипликативно. Визуальное впечатление было бы совсем иным, если бы эти числа записали римскими цифрами или если бы мы начертили палочки. В нашей системе единиц, десятков, сотен и т. д. добавление нуля приводит к тому, что представленное число умножается на десять, внося путаницу между сложением и умножением.

Таким образом, если мы расставим числа на отрезке, в соответствии с мультипликативным подходом, миллион будет точно посередине. И слева, и справа мультипликативный разрыв между числами будет равен тысяче.

Странно, что этот феномен не наблюдается, когда речь идет о не таких больших числах. Если бы я попросил вас разместить число 50 на отрезке от 1 до 100, вы без малейших колебаний поместили бы его посередине.

<< 1 2 3 >>
На страницу:
2 из 3