Оценить:
 Рейтинг: 3.67

Гидравлика

Автор
Год написания книги
2009
<< 1 2 3 4 5 6 ... 8 >>
На страницу:
2 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

Плотность массовой силы – векторная величина, отнесена к единичному объему ?W; ее можно проецировать по осям координат и получить: Fx, Fy, Fz. То есть плотность массовой силы ведет себя, как массовая сила.

Примерами этих сил можно назвать силы тяжести, инерции (кориолисова и переносная силы инерции), электромагнитные силы.

Однако в гидравлике, кроме особых случаев, электромагнитные силы не рассматривают.

2. Поверхностные силы. Таковыми называют силы, которые действуют на элементарную поверхность ?w, которая может находиться как на поверхности, так и внутри жидкости; на поверхности, произвольно проведенной внутри жидкости.

Таковыми считают силы: силы давления которые составляют нормаль к поверхности; силы трения которые являются касательными к поверхности.

Если по аналогии (1) определить плотность этих сил, то:

нормальное напряжение в точке А:

касательное напряжение в точке А:

И массовые, и поверхностные силы могут быть внешними, которые действуют извне и приложены к какой-то частице или каждому элементу жидкости; внутренними, которые являются парными и их сумма равна нулю.

4. Гидростатическое давление и его свойства

Общие дифференциальные уравнения равновесия жидкости – уравнения Л. Эйлера для гидростатики.

Если взять цилиндр с жидкостью (покоящейся) и провести через него линию раздела, то получим жидкость в цилиндре из двух частей. Если теперь приложить некоторое усилие к одной части, то оно будет передаваться другой через разделяющую плоскость сечения цилиндра: обозначим эту плоскость S = w.

Если саму силу обозначить как то взаимодействие, передаваемое от одной части к другой через сечение ?w, и есть гидростатическое давление.

Если оценить среднее значение этой силы,

Рассмотрев точку А как предельный случай w, определяем:

Если перейти к пределу, то ?w переходит в точку А.

Поэтому ?p

? ?p

. В конечном результате px = pn, точно так же можно получить p

= p

, p

= p

.

Следовательно,

p

= p

, p

= p

.

Мы доказали, что во всех трех направлениях (их мы выбрали произвольно) скалярное значение сил одно и то же, то есть не зависит от ориентации сечения ?w.

Вот это скалярное значение приложенных сил и есть гидростатическое давление, о котором говорили выше: именно это значение, сумма всех составляющих, передается через ?w.

Другое дело, что в сумме (p

+ p

+ p

) какая-то составляющая окажется равной нулю.

Как мы в дальнейшем убедимся, в определенных условиях гидростатическое давление все же может быть неодинаково в различных точках одной и той же покоящейся жидкости, т. е.

p = f(x, y, z).

Свойства гидростатического давления.

1. Гидростатическое давление всегда направлено по нормали к поверхности и его величина не зависит от ориентации поверхности.

2. Внутри покоящейся жидкости в любой точке гидростатическое давление направлено по внутренней нормали к площадке, проходящей через эту точку.

Причем p

= p

= p

= p

.

3. Для любых двух точек одного и того же объема однородной несжимаемой жидкости (? = const)

?

+ ?П

= ?

+ ?П
<< 1 2 3 4 5 6 ... 8 >>
На страницу:
2 из 8