Оценить:
 Рейтинг: 0

Избранные главы курса Радиохимия

Год написания книги
2018
<< 1 2 3 4 5 6 ... 14 >>
На страницу:
2 из 14
Настройки чтения
Размер шрифта
Высота строк
Поля

в) комплексные ионы, образованные центральным ионом (М

) и лигандами (L

), причем лиганды могут быть одинаковой или различной химической природы – {M(H

O)

L

}

;

г) моноядерные продукты гидролиза {M(H

O)

(OH)

}

;

д) полиядерные гидроксокомплексы – {M

(H

O)

(OH)

}

;

е) гетерополиядерные гидроксокомплексы;

ж) истинные радиоколлоиды;

з) псевдорадиоколлоиды.

Знание форм состояния радионуклидов чрезвычайно важно, так как они определяют поведение радионуклида в любых технологических операциях (сокристаллизация, соосаждение, сорбция, ионный обмен, экстракция, электролиз и т. п.). Поэтому представляют интерес расчетные методы, позволяющие на основании справочных данных получить предварительную оценку концентрации (или доли) каждой из возможных форм состояния радионуклида в растворе конкретного состава.

1.2. Ионо-дисперсное состояние микрокомпонентов в растворах. Комплексные соединения

К ионно-дисперсным формам относятся простые акваионы, моноядерные, полиядерные и гетрополиядерные комплексы.

Описание ионодисперсных форм обычно осуществляют с позиций образования комплексных соединений.

Комплексные соединения или, другими словами, координационные соединения – это частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому 'комплексообразователем' (центральным атомом), нейтральных молекул или других ионов, называемых лигандами. Для комплексного соединения характерно то, что он сохраняется как самостоятельная единица даже в растворе, хотя может происходить и частичная диссоциация. Комплекс может быть нейтральной частицей или иметь положительный или отрицательный заряд в зависимости от заряда центрального атома и координированных групп – лигандов. В растворе простые ионы не существуют, они образуют с молекулами растворителя сольватные (для водных растворов – акво-) комплексы. Молекулы растворителя более или менее прочно связаны с ионами, молекулы первой сольватной оболочки расположены вокруг иона в определенном порядке. Количество и расположение молекул растворителя вокруг центрального атома определяется объемом иона, плотностью заряда на нем и пространственными условиями. Следовательно, реакцию образования комплексов в растворе можно рассматривать как реакцию обмена молекул растворителя на молекулы лигандов:

, (1.1)

М – центральный ион, L – лиганд (органический или неорганический ион или нейтральная молекула), заряды для простоты опущены.

В процессе комплексообразования молекулы растворителя, окружающие центральный ион могут последовательно замещаться ионами или молекулами лиганда, что в итоге приводит к образованию комплекса ML

, где n – число лигандов в комплексе. Это число равно координационному числу, если лиганды образуют с центральным ионом только одну связь. Координационное число зависит от природы лиганда, поэтому к приписыванию данному центральному иону одного определенного координационного числа следует относиться с осторожностью. Классический подход к определению структуры координационных соединений заключался в том, чтобы установить структуру неизвестного соединения на основе структур известных изомеров. Структуры плоского квадрата, тетраэдра и октаэдра (рис. 1.2.), приписанные соединениям, были подтверждены физико-химическими методами. Хотя наиболее часто встречаются координационные числа 6 или 4, известны соединения, в которых центральный ион имеет координационное число вплоть до 10–12.

Рис. 1.2. Образование комплексов различной структуры [1].

Равновесия реакций комплексообразования

В общем случае образование комплексного соединения можно выразить следующим уравнением:

, (1.2)

тогда термодинамическая константа комплексообразования:

, (1.3)

где a

= f[M] – активность, f – коэффициент активности, [ ] – символ концентрации. Согласно теории Дебая-Хюккеля, коэффициенты активности в разбавленных растворах в первом приближении определяются только ионной силой раствора и могут быть рассчитаны по уравнению Дэвиса [2].

При постоянной ионной силе J = const концентрационная константа ? отличается от термодинамической константы ?

при J = 0 на постоянную величину, поэтому

. (1.4)

Если в структуре комплекса существует только один центральный атом, то он называется моноядерным, если m ? 1, то полиядерным. Хотя полиядерные комплексы встречаются также часто, как и моноядерные, в большинстве случаев их образованием пренебрегают, особенно при низких концентрациях.

Комплексы обычно образуются ступенчато, процесс характеризуется ступенчатыми константами комплексообразования K

:

(1.5)

Проведя подстановки:

получаем

, (1.6)

где ?

– общая константа образования (устойчивости). В данном выражении N – число присоединенных лигандов, а не координационное число. Если рассматривать обратный процесс, то получаем реакцию диссоциации, которая характеризуется константой диссоциации или нестойкости k:
<< 1 2 3 4 5 6 ... 14 >>
На страницу:
2 из 14