Оценить:
 Рейтинг: 0

Неоткрытые миры

Год написания книги
2018
Теги
<< 1 2 3 4 5 6 7 >>
На страницу:
5 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля
В 2015 году детектор гравитационных волн ЛИГО поймал первую в истории гравитационную волну от слияния двух чёрных дыр с массой в 29 и 36 масс Солнца. Этот результат поразил учёных: оказывается, в космосе существует большое количество чёрных дыр, гораздо более тяжёлых, чем обычные дыры звёздных масс! Сразу возникло предположение, что тёмная материя – это большое количество чёрных дыр в десятки масс Солнца. Но откуда взялись такие массивные чёрные дыры, ведь обычные модели звёздной эволюции их не предсказывают? Появилась смелая гипотеза, что эти чёрные дыры пришли к нам из предыдущего цикла Вселенной, потому что чёрные дыры – это единственные макроскопические объекты, которые могут пережить коллапс мира и, пройдя через огненную фазу максимально сжатой Вселенной, попасть в следующий цикл её жизни.

Итак, «тёмная материя» (а её, по последним данным, в пять-шесть раз больше, чем обычного газа и звёзд) всё ещё остаётся загадкой, которую предстоит решить учёным будущего. Чёрные ли это дыры? Элементарные ли это частицы? Несомненно, к середине XXI века эта загадка будет разгадана.

Вера Рубин почти всю жизнь проработала в небольшом частном институте Карнеги, расположенном в парковой зоне американской столицы, и была независимым исследователем. Её работы часто встречали непонимание астрономического сообщества, но в конце XX века тёмная материя, которую в 1933 году Фриц Цвикки нашёл в скоплениях галактик, а Вера Рубин и Кент Форд в 1970-х обнаружили внутри отдельных галактик, превратилась в объект активнейших исследований. В начале XXI века уже тысячи учёных изучали проблему тёмной материи. Но ни Фриц Цвикки, обнаруживший тёмную материю в скоплениях галактик, ни Вера Рубин, которая открыла её внутри галактик, не получили Нобелевской премии.

Это вызывало негодование многих, но сама исследовательница не вмешивалась в эти споры. Она скромно говорила: «Мне жаль, что я так мало знаю. Извините, мы все так мало знаем. Но в этом же и состоит всё удовольствие, не так ли?»

Кроме научных результатов, Вера Рубин воспитала четверых детей – они все стали учёными и защитили диссертации в области естественных наук.

– Почему они все выбрали науку своей профессией? – удивилась Галатея.

– Их отец был физиком, мать – астрономом, которая получала столько удовольствия от своей работы, что десятилетний сын как-то спросил удивлённо: «Мама, тебе за твою работу ещё и деньги платят?»

Вера Рубин не только изучала загадки, перед которыми стояла современная ей наука, но и раздумывала над проблемами будущего.

«Какие задачи станут решать астрономы будущего? Какими вопросами будут задаваться астрономы Вселенной через сто лет? Через тысячу лет? Легко перечислить нерешённые вопросы настоящего времени. Каков возраст Вселенной? Какова скорость расширения Вселенной? Какова масса Вселенной? Что такое тёмная материя? Достаточно ли её гравитационного притяжения, чтобы остановить расширение Вселенной и заставить её сжиматься? Есть ли у ближайших звёзд планеты, на которых зародилась жизнь и разум? Достаточно ли они близки к нам, чтобы мы могли установить с ними связь в обозримом времени?

Но есть ещё проблемы, о которых мы знаем так мало, что с трудом можем сформулировать нужные вопросы. Вот очень приблизительный их список: существуют ли другие вселенные? Будем ли мы когда-нибудь общаться с ними? Как изменится наше представление о Вселенной при обнаружении гравитонов? Когда мы вглядываемся во Вселенную, мы смотрим в наше прошлое, но наши „глаза“ слабы, и мы ещё не можем проникнуть взглядом на большие расстояния. Загадки края вселенной превосходят наше понимание. Как Колумбы или викинги, мы заглянули в новый мир и увидели, что он более загадочен и сложнее, чем мы себе представляли. Самые большие загадки Вселенной остаются нерешёнными. Они станут приключениями для учёных будущего. Мне это нравится».

Вера Рубин сказала, обращаясь к молодёжи: «Для тех из вас, кто хочет быть учёным, у меня есть один совет. Не сдавайтесь! Наука трудна и требовательна, но каждый из вас должен верить в то, что вы можете добиться успеха. Сегодня может показаться невероятным, но среди вас нет никого, кто не мог бы внести важный, значительный вклад в мир науки. Наука ревнива, агрессивна, требовательна. Но она также великолепна, вдохновляет и окрыляет. Каждый из вас может изменить мир, потому что вы состоите из звёздного вещества и связаны со Вселенной».

Примечания для любопытных

Фриц Цвикки (1898–1974) – знаменитый швейцарский астроном, родившийся в Варне (Болгария) и почти всю жизнь проработавший в Калифорнии (США). Атеист. Открыл тёмную материю в скоплениях галактик, ввёл вместе с В. Бааде понятие «сверхновой», как взрыва, который превращает обычную звезду в нейтронную. Предсказал гравитационное линзирование галактик друг на друге. Получил в 1949 году за работы в области разработки реактивных двигателей Президентскую модель свободы от американского президента Трумэна. В 1972 году получил золотую медаль Королевского астрономического общества за выдающийся вклад в астрономию и космологию. В честь Цвикки назван астероид номер 1803 и лунный кратер размером в 150 км.

Калифорнийский технологический институт – знаменитый университет в Южной Калифорнии, основанный на частные пожертвования в 1891 году. В его состав входит Паломарская обсерватория, обладающая пятиметровым телескопом, и Лаборатория реактивного движения, которая работает на НАСА. В Калтехе учится всего 2200 студентов и аспирантов. Выпускники и сотрудники Калтеха получили тридцать семь Нобелевских премий.

Вальтер Бааде (1893–1960) – известный немецкий астроном, работавший в 1931–1959 годах в США. Вместе с Ф. Цвикки определил сверхновые звёзды как новую категорию астрономических объектов и предсказал появление нейтронных звёзд на месте взрыва сверхновых. Открыл десять астероидов. Астероид номер 1501 и лунный кратер названы в честь Бааде.

Вольфганг Паули (1900–1958) – физик-теоретик, один из основателей квантовой теории. Лауреат Нобелевской премии по физике (1945).

Кип Торн (р. 1940) – известный американский физик-гравитационист, соавтор классической монографии по теории Эйнштейна и космологии. Один из лидеров проекта ЛИГО, в результате которого открыты гравитационные волны. Лауреат премий Грубера, Шау, Харвея и Кавли (2016). Лауреат Нобелевской премии (2017).

Джоселин Белл (р. 1943) – знаменитая британская женщина-астроном, открывшая в 1967 году пульсары, будучи юной аспиранткой. Не получила за это открытие Нобелевской премии, хотя её научный руководитель получил. Награждена Королевской медалью (2015 год) и другими научными наградами.

Вера Рубин (1928–2016) – знаменитая американская женщина-астроном, которая открыла, что звёзды в галактиках, включая Млечный Путь, движутся быстрее, чем позволяет притяжение видимой материи, – так, словно в галактиках содержится большое количество невидимого вещества. В начале XXI века на эту тему публиковалось полторы тысячи научных статей в год. Вера Рубин получила за свои работы множество наград, включая золотую медаль Королевского астрономического общества (1996) и премию Грубера по космологии (2002).

Закон Кеплера – закон, сформулированный Иоганном Кеплером (1571–1630), согласно которому, скорость обращения планет падает с ростом расстояния от Солнца. Увеличение расстояния в четыре раза вызывает уменьшение скорости обращения в два раза.

Сложная сказка о простых частицах

Королева Никки приехала в гости и присоединилась к детям, которые слушали традиционную вечернюю сказку, что читала их мать, Дзинтара.

– Из чего состоят наши тела, вода, камни, деревья и всё в природе, что нас окружает? Этим вопросом задавались ещё древние греки. Грек Демокрит был младшим сыном в богатой семье. Он взял свою долю наследства деньгами и отправился путешествовать. Он объездил многие страны и города, включая Египет, где жили и работали самые выдающиеся математики и учёные Средиземноморья. Он был равнодушен к славе и был всегда весёлым, за что получил прозвище «смеющийся философ». Демокрит стал учеником Левкиппа, и после долгих бесед и споров они пришли к выводу, что все тела нашего мира состоят из мельчайших неделимых частиц – атомов. Они цепляются друг за друга специальными крючками и образуют разные предметы. Между атомами лежит пустота.

Диоген Лаэртский, греческий историк, так описывал мировоззрение Демокрита: «Начала Вселенной суть атомы и пустота, всё остальное лишь считается существующим. Миры бесконечны и подвержены возникновению и разрушению. Ничто не возникает из несуществующего, и ничто не разрушается в несуществующее. Атомы тоже бесконечны по величине и количеству, они вихрем несутся по Вселенной и этим порождают всё сложное – огонь, воду, воздух, землю, ибо все они суть соединения каких-то атомов, которые не подвержены воздействиям и неизменны в силу своей твёрдости. Солнце и луна состоят из таких же телец, гладких и круглых, точно так же и душа; а душа и ум – одно и то же».

– Мне кажется, что моя душа отличается от души Андрея, – сказала Галатея, – Моя душа состоит из зелёных кругленьких телец, а его – склеена из коричневых квадратных частиц.

– Из кубических, – поправил педантичный Андрей младшую сестру.

– Именно это я и имею в виду! – хихикнула Галатея.

– Теория Левкиппа и Демокрита вызвала резкую критику. Афины, тогдашний центр европейской научной мысли, не признали этого учения. Платон высказался за то, что все книги Демокрита надо сжечь. Действительно, ни одной из его книг до нас не дошло, история сохранила лишь отдельные его высказывания. Ещё один титан античности, Аристотель, считал, что ветер, огонь, вода и земля являются непрерывными субстанциями, поэтому существование пустоты между атомами Демокрита противоречит законам природы. Даже спустя тысячи лет, в Средние века, церковь категорически отрицала учение, по которому всё в мире состоит из атомов, и жестоко преследовала сторонников атомизма, считая их еретиками.

История показала, что Демокрит был прав. Учение об атомах стало основой современного научного мировоззрения. По лестнице размеров астрономы идут вверх, в макромир, а физики и химики – вниз, в микромир, но куда бы мы не пришли, мы имеем дело с атомами. Но являются ли атомы простейшими и неделимыми элементами мира? Нет, атомы оказались далеко не такими круглыми и гладкими, как думал Демокрит. Учёные выяснили, что атомы сами состоят из более простых частиц, которые стали называть элементарными. Первой элементарной частицей стал отрицательно заряженный электрон, открытый Дж. Томсоном в 1897 году. Через двадцать с лишним лет Резерфорд и другие физики доказали существование ещё одной элементарной частицы – положительно заряженного массивного протона.

В начале XX века был период, когда, как казалось физикам, мечта человека о познании мельчайших неделимых частиц мира осуществилась. Трёх сортов стабильных частиц – электронов, протонов и фотонов – хватало для объяснения светового электромагнитного излучения от атомов и для построения самих атомов, положительно заряженные ядра которых состояли, по тогдашним воззрениям, из неравной смеси протонов и электронов, а оболочки – из отрицательно заряженных электронов. Значит, именно эти три частицы являются теми простейшими кирпичиками, из которых построен наш мир? Но модель атомного ядра, состоящего из протонов и электронов, вызывала сомнения. Резерфорд и другие физики подозревали, что в ядре существует нейтрон – нейтральная частица, которая прибавляет ядру массу, не добавляя заряд. Именно количеством нейтронов в ядре и отличаются друг от друга изотопы одного и того же химического элемента. В 1932 году нейтрон был открыт Чедвиком. Казалось, что можно вздохнуть с облегчением: мир атомов прекрасно строился из протонов, нейтронов и электронов. Добавить сюда фотоны – и получится, что для построения Вселенной достаточно всего четырёх сортов частиц, из которых только нейтрон был нестабильным и имел время жизни на свободе около четырнадцати минут, хотя внутри ядра он сохранял устойчивость и жил неограниченно долго.

Но была одна проблема: при бета-распаде нестабильных ядер оттуда вылетали электроны. Когда учёные подсчитали энергетический баланс этой реакции, то обнаружили, что энергия системы до распада и после различается, словно закон сохранения энергии не выполняется. Вольфганг Паули в 1930 году выдвинул идею нейтрино – лёгкой нейтральной частицы, которая уносит часть энергии бета-распада. С учётом нейтрино, которое было очень трудно обнаружить, закон сохранения удавалось спасти.

– Значит, для построения мира нужно было пять частиц? – уточнила Галатея.

– Для ядерных сил, скрепляющих атомное ядро, японец Юкава в 1934 году предложил модель, в основе которой лежит новая и нестабильная элементарная частица пимезон.

– Шесть частиц? – Галатея стала загибать пальцы на второй руке.

– В 1936 году нашли частицу, которую приняли за мезон Юкавы. Но это оказался мюон, совсем не та частица, которая ожидалась. Как сказал профессор Исидор Раби, когда был открыт мюон: «Кто заказал это?» Пимезон Юкавы был открыт в 1947 году.

– Уже семь частиц! – продолжила счёт девочка.

– Модель элементарных частиц затрещала по швам. В том же году были открыты две новые элементарные частицы – К-мезон и лямбда-гиперон. В 1955 году был открыт антипротон, в 1956 году – нейтрино, предсказанное Паули. Элементарные частицы посыпались, как горох из разорвавшегося мешка.

– Ой! – Галатея посмотрела на свои загнутые пальцы: её персональный компьютер исчерпал память.

– К ним пришлось добавить античастицы, которых, согласно уравнению Дирака, было ровно столько же, сколько обычных частиц. Элементарных частиц открывалось по несколько штук в год, и за несколько десятков лет учёные нашли сотни таких частиц. Целый зоопарк в микромире: даже нейтрино оказалось не одного, а трёх сортов – электронное, мюонное и тау-нейтрино. Стало понятно, что привычные «элементарные частицы» не могут претендовать на звание «элементарных», тем более что они крайне нестабильны и никак не походят на неизменные атомы Демокрита. Значит, они сами построены из более простых и неделимых частичек? Начались интенсивные поиски по-настоящему элементарных частиц. Но пусть лучше об этом расскажет известный физик Ричард Фейнман, или, вернее, его дух, который живёт в моём домашнем компьютере.

Динамики компьютера вдруг ожили, и дух Фейнмана сказал:

– Число частиц в мире не ограничено и зависит от энергии, потраченной на разрушение ядра. В настоящее время открыто более четырёхсот таких частиц. Мы не можем смириться с тем, что существуют четыре сотни элементарных частиц – это слишком сложно! Природа продолжает нагромождать эти частицы как бы с целью нас одурманить. Если 99 % явлений в мире можно объяснить при помощи электронов и фотонов, то оставшийся 1 % явлений потребует в десять или двадцать раз больше дополнительных частиц.

– И что же делать? – спросила Галатея.

– Думать! – рявкнули динамики голосом Фейнмана. – Великие изобретатели вроде Гелл-Манна чуть с ума не посходили, пытаясь вывести правила, которым подчиняются эти частицы, и в начале 70-х годов XX века создали теорию сильных взаимодействий (или «квантовую хромодинамику»), в которой основными действующими лицами являются частицы, получившие название «кварки». Все частицы, состоящие из кварков, разделяются на два класса: одни частицы, например протоны и нейтроны, состоят их трёх кварков (такие частицы получили ужасное название «барионы»), другие – например пион – состоят из кварка и антикварка (они называются «мезонами»), Дзинтара снова взяла нить повествования в свои руки.

– Физики любят исследовать элементарные частицы, сталкивая их лбами. Разгоняют частицы на ускорителях, и – бабах! – только искры из глаз у частиц сыплются. Физики изучают эти искры и траектории заплаканных частиц, разлетающихся после соударения, и узнают о строении частиц много нового.

– Ужас! – сказала Галатея. – Надо организовать союз защиты элементарных частиц.

– Таким способом Эрнст Резерфорд исследовал строение атома: облучил атомы положительно заряженными альфа-частицами и обнаружил, что альфа-частицы иногда сильно отклоняются при рассеянии на атомах. Это возможно, только если атом является не рыхлой крупной структурой, как думал Томсон, а содержит в себе крошечное и плотное ядро с положительным зарядом. Так Резерфорд доказал, что в атоме есть ядро с размером в десять тысяч раз меньше, чем сам атом.

Аналогичное открытие сделали физики более полувека спустя. Они по рассеянию протонов друг на друге нашли, что протон не представляет собой однородный шар – в нём прячутся маленькие и плотные части, которые позже стали называть кварками и глюонами.

Химик Менделеев проанализировал свойства химических элементов и нашёл в них закономерности, которые привели к открытию Периодического закона. На основании этого закона Менделеев предсказал существование ещё не открытых химических элементов и даже заранее вычислил их массу и другие характеристики.

Аналогично поступили и физики: они изучили свойства всех известных элементарных частиц и нашли, что их можно разделить натри группы: лептоны, кварки и кванты полей.

Исходя из этой классификации, шотландец Хиггс, бельгиец Энглерт и другие физики создали теорию элементарных частиц и предсказали открытие нескольких ранее неизвестных частиц, в частности бозон Хиггса. Для этих неоткрытых частиц удалось вычислить массу и другие характеристики. Несколько десятилетий экспериментаторы, работающие на ускорителях, искали эти частицы – и нашли абсолютно все, включая бозон Хиггса, который журналисты любят называть «частицей бога» – настолько фундаментальной во всех смыслах оказалась эта частица.

<< 1 2 3 4 5 6 7 >>
На страницу:
5 из 7