a
= a
+ ?
=15+1=16;
a
= a
+ ?
=16+2=18;
a
= a
+ ?
=18+3=21;
………………..
a
= a
+ ?
=36+1=37.
Следует заметить, что в первом примере значение ?
для всех элементов в столбце одинаковое, а во втором примере ?
изменяется при переходе от одного элемента строки к другой в зависимости от номера столбца.
Если для определенности будем считать, что в верхней строке расположены простые числа a, в крайней левом столбце простые числа b, то чтобы не рассматривать зеркально верхнему треугольнику нижний от главной диагонали треугольник, следует принять условие a? b. Тогда в общем виде таблица 5 будет симметрична относительно главной диагонали и все свойства для нижней части таблица 5 будут идентичны свойствам для верхней части.
Таким образом, из вышесказанного обобщения можно записать следующие выражения:
– для всех элементов столбца
a
=a
+?
;
– для всех элементов строки
a
=a
+?
,
где
?
=(p
– p
)/2;
i=1,2,3, …. k – номер столбца или строки в таблице 5;
* – символ, обозначающий индексы по всей строке или столбцу.
И, наконец, исследуя симметричные числа либо на числовой оси (см. рис. 2) либо по таблице 5 можно выделить еще одно их свойство. Это относиться к тем арифметическим прогрессиям, которые они образуют. Выразим это свойство следующим утверждениями.
Утверждение 1. Любое число n натурального ряда больше 1 равно среднему арифметическому симметричных пар этого числа.
Доказательство данного утверждения очевидно и следует из выражения (1.5).
Из данного свойства вытекает и последующее свойство симметричных пар чисел, сформулированного в утверждении 2.
Утверждение 2. Любое число n натурального ряда больше 1 и принадлежащие ему симметричные пары числа являются членами арифметической прогрессии.
Доказательство указанного утверждения также очевидно и вытекает из выражений (1.7), (2.2).
Утверждение 3. Симметричная пара любого числа n больше 1 состоит из симметричных пар либо только четных, либо только нечетных чисел.
Доказательство.
Согласно (1.3) имеем:
a=n – ?
b=n + ?,