Оценить:
 Рейтинг: 4.5

Энциклопедия Амосова. Алгоритм здоровья

Жанр
Год написания книги
2002
<< 1 2 3 4 5 6 7 8 9 10 ... 22 >>
На страницу:
6 из 22
Настройки чтения
Размер шрифта
Высота строк
Поля

Вверху изображены “органы управления” – ДНК, состоящая из генов, и рибосомы; ниже – “рабочие элементы”, тоже условно поделенные на “специфические” и “обеспечивающие” структуры, которые выполняют соответствующие функции. Толстыми стрелками с надписями обозначены внешние “входы” и “выходы”, тонкими – прямые и обратные связи между элементами.

Рис. 1. Схема клетки

Деятельность клетки сводится к многочисленным химическим реакциям, каждая из которых протекает под действием своего белка-фермента. Белки синтезируются, “печатаются” в рибосомах по матрицам-образцам РНК, которые получаются путем копирования одного гена с ДНК. Говорят: один ген – один белок. Таким образом, в генах содержится набор “моделей” для всех видов белков-ферментов клетки, а кроме того, масса специальных генов – “инструкций”, призванных управлять, то есть включать и останавливать синтез тех или иных белков в зависимости от деятельности клетки в данный период. Например, для деления клетки нужны одни белки, для захвата пищи или переваривания ее – другие. “Неработающие” гены заблокированы. Они включаются в действие по сигналам, идущим от “рабочих” элементов (смотри стрелку “Запрос на синтез”), а также от регулирующих систем организма, действующих через специфические гормоны.

В каждой клетке организма есть полный набор генов для всех видов его клеток, который сформировался еще в яйцеклетке при ее оплодотворении. В нем закодированы все белки-ферменты и все “инструкции”: как развиваться плоду, как вырасти взрослому, как должен действовать каждый вид клеток в процессе жизни человека. С развитием генетики дело с генами усложнилось: оказалось, что, кроме генов “нужных” – для белков-ферментов, белков структурных, генов-регуляторов, – в геноме содержится масса генов неизвестного назначения. По крайней мере – пока неизвестных. Таких насчитывают 50–80 %! Впечатление, что геном “засорен”. Источниками “лишних” генов считают вирусы. Возможно, что часть из них служит резервом, который включается при больших нагрузках. Возможно, что за их счет осуществляются процессы приспособления и механизмы эволюции.

“Главная” деятельность клетки, служащая нуждам целого организма, осуществляется ее “специфическими” рабочими элементами. Объем, или количество, функции, например сила сокращения мышечного волокна, определяется тремя факторами: интенсивностью внешнего раздражителя, массой “наработанных” ранее белков и наличием энергии, поставляемой “обеспечивающими” структурами. Для всех них на схеме показаны стрелки и надписи. “Обеспечивающие” элементы работают под воздействием “специфических” стимулов, производят по их запросам энергию в виде активных фосфорсодержащих молекул АТФ из глюкозы, аминокислот и жирных кислот, получаемых из крови.

Биохимики установили интересный факт: все живые белки закономерно распадаются на простые молекулы с постоянной скоростью. Величина ее определяется как “период полураспада”. Для белков сердечной мышцы он равен примерно 30 дням. Это значит, что из 200 граммов белка через 30 дней останется только 100, еще через 30 дней 100: 2 = 50 и так далее, если за это время не синтезируются новые молекулы. Есть долгоживущие белки с периодом полураспада 100 и более дней. Из них составлены стойкие структуры соединительной ткани – связки, хрящи, даже кость.

Новый белок “нарабатывается” в рибосомах по “моделям”, снятым с гена в ответ на “запросы” от “рабочих элементов” при регулирующем воздействии гормонов. Чем напряженнее работает каждая молекула белка-фермента и чем больше этих молекул, то есть чем больше масса белка в “рабочем элементе”, тем выше “запрос”, тем больше синтезируется новых молекул белка. Так осуществляется баланс белка: одни молекулы распадаются в количествах тем больших, чем больше масса, а на их место синтезируются другие – в количествах, зависящих от интенсивности функции и от уже имеющейся массы. В то же время предел максимальной функции прямо определяется количеством белка.

Важно уяснить два типа процессов, протекающих в клетке, а соответственно, и в организме, состоящем из многих клеток.

Первый процесс – тренировка. Если внешний раздражитель сильный, он заставляет функционировать все молекулы “рабочих” элементов с максимальным напряжением, от них идет максимальный “запрос на синтез” в ДНК-рибосомы, и они так же максимально синтезируют новый белок. “Старый” белок при этом продолжает распадаться с постоянной скоростью. В результате при большой нагрузке синтез обгоняет распад, и общая масса белка возрастает. Соответственно возрастает и мощность функции.

Самый простой пример – тренировка спортсмена: чем больше нагрузка, тем больше мышечная масса и, соответственно, поднимаемый тяжелоатлетом вес.

Второй процесс – детренированность. Предположим, что внешний раздражитель резко ослабляется; соответственно, падает функция и уменьшается “запрос на синтез” новых молекул. В то же время наработанная ранее при большой функции масса белка продолжает распадаться с прежней скоростью пропорционально массе на данный момент. В результате распад обгоняет синтез, суммарная масса белка уменьшается (атрофия) и, соответственно, уменьшается сила сокращения мышцы, возможность функции. Спортсмен бросил тренироваться, мышцы у него “растаяли”, и он уже не может поднять даже половину того веса, который поднимал ранее.

Эти механизмы тренировки и детренированности белковых рабочих структур универсальны для всех клеток: мышечных, нервных или железистых – и для всех их функций. В частности, именно детренированность определяет развитие многих болезней, когда орган не в состоянии справиться с возросшей нагрузкой. Конечно, в разных органах различна масса функционального белка, поскольку различно потребление энергии. Поэтому уменьшение объема детренированного нейрона коры мозга не сравнимо с атрофией бицепсов неработающего спортсмена.

Клетка живет по своим программам, заданным в ее генах. Она очень напоминает современный большой завод, управляемый хорошим компьютером с гибкими программами, обеспечивающими выполнение плана при всех трудностях. Если условия среды становятся для клетки неблагоприятными, то функции ее постепенно ослабляются, и наконец замирает сама жизнь.

На схеме (рис. 2) показаны характеристики функциональной структуры клетки при разных уровнях тренированности. Кривые отражают изменение “специфической” (“главной” для целого организма) функции клетки в зависимости от силы внешнего раздражителя.

Над верхней кривой для самой тренированной клетки обозначены три режима: нормальный, форсированный и патологический. Что это такое? Названия говорят сами за себя. Нормальный режим обеспечивает среднюю интенсивность деятельности клетки, он устойчив и не ограничен во времени. Все химические реакции хорошо сбалансированы и не напряжены. На кривых мы видим линейную зависимость между силой раздражителя и возрастанием функций.

Форсированный режим временно обеспечивает повышенную функцию ценой снижения КПД и расходования запасов энергии. В сложном организме он вызывается действием особых веществ – активаторов, чаще всего гормонов. Деятельность его ограничена резервами энергии.

Патологический режим – это уже болезнь, и об этом особый разговор.

Рис. 2. Характеристики функциональной структуры клетки при разных уровнях тренированности

В чем выражается здоровье клетки? Это выполнение программ жизни: питание, рост, специфические функции, размножение. “Уровень здоровья” – это интенсивность проявления жизни в нормальных условиях среды, которая определяется тренированностью структур клетки.

Есть и другое определение: “Количество здоровья – это пределы изменений внешних условий, в которых еще продолжается жизнь”.

“Количество здоровья” можно выразить в понятии “резервные мощности”. Оно хотя и не биологического происхождения, но всем понятно; например, при движении по ровной дороге с нормальной скоростью от мотора автомобиля требуется 15 лошадиных сил, а максимальная его мощность 75 сил. Следовательно, есть пятикратный резерв мощности, который можно использовать для движения в гору или по плохой дороге. То же самое в клетке или органе. Нижняя точка на оси ординат – это величина функции, которую организм в состоянии покоя требует от клетки. Для детренированной клетки это почти предел нормального режима; чтобы получать больше, нужна форсировка. Для среднетренированной клетки есть трехкратный резерв, а при высокой тренированности – шестикратный. На оси абсцисс треугольником отмечена точка. Для детренированной клетки это предельная величина силы раздражителя, при усилении раздражений наступает патологический режим. При высокой тренированности раздражитель такой силы является нормальным.

Тренировка наиболее эффективна, когда величина функции приближается к границе форсированного режима. Эта точка отмечена на средней кривой.

Схема показывает, какое значение имеет тренировка для повышения “резервных мощностей”. Сильный внешний раздражитель для детренированной клетки (органа или целого организма – все равно) вводит ее в патологический режим, то есть уже в болезнь, а для тренированной – это нормальная интенсивная работа.

Болезнь клетки в сложном организме – понятие непростое. Может ли “болеть” завод? Очевидно, да. Когда при нормальном снабжении и хороших рабочих он недодает продукцию или выпускает брак, значит, есть тому причины.

По идее клетка не должна “болеть”, пока она нормально снабжается энергетическими и строительными материалами, пока периодически получает извне раздражители, дающие ей хорошую тренировку и пока ее “органы управления”, то есть ДНК, в порядке. В самом деле: все структуры клетки обновляются, новые “детали” делаются по программам, заложенным в ДНК, в генах.

Даже если было плохо и клетка “заболела”, то создай ей нормальные условия, и спустя некоторое время она обновит свои структуры и выздоровеет. Если только гены в порядке. Специалисты по молекулярной генетике говорят, что гены повреждаются редко. Подумайте, как это хорошо!

И тем не менее болезней полно, и все они первично проявляются в клетках.

Какую клетку сложного организма мы считаем больной? Если она не выдает достаточной функции в ответ на “нормальное” раздражение, поступающее от системы организма, не выполняет свои программы деления, ее химия нарушена, и она выдает вовне продукты неполного обмена, вредные для других клеток. В общем, с позиций целого организма клетка больна, если она не справляется с требуемыми от нее функциями – осуществлять движение, выделять гормоны, продуцировать нервные импульсы. Перечислю возможные причины патологии клетки.

Детренированность. Если клетка периодически не получала больших нагрузок, она детренируется и на нормальный раздражитель дает пониженную функцию. Если раздражитель превышает предел достигнутой тренированности, клетка вступает в патологический режим, при котором химические реакции идут не до конца, и в ней накапливаются их продукты. Условно их можно назвать “помехами”.

Плохое “снабжение”. В крови недостаточно энергетических или строительных материалов: молекул глюкозы, жирных кислот, аминокислот, витаминов, микроэлементов, кислорода. Иногда это бывает, когда между кровью и клеткой возникает барьер из межклеточных структур – продуктов соединительной ткани или нарушается циркуляция крови по капиллярам (так называемая микроциркуляция).

Встречается и нарушенное гормональное регулирование генов со стороны эндокринной системы, и “отравление” клеток микробными токсинами или другими ядовитыми веществами, которые тормозят действие ферментов. Аналогично могут действовать нормальные продукты обмена, если они не удаляются из-за нарушения кровообращения (“шлаки”). Наконец, возможны прямые повреждения генов из-за радиации, отравлений, внедрения новых участков ДНК, привнесенных вирусами или в результате мутаций. Это самая тяжелая патология, так как нарушаются “чертежи”, по которым изготовляются ферменты. Правда, клетка имеет возможность сама “ремонтировать” двойную спираль ДНК, если поражена одна ее нить, но только при делении. Но не все клетки делятся. Например, нейроны коры мозга рассчитаны на “всю оставшуюся жизнь”: когда они повреждаются, то заменяются рубцом из соединительной ткани.

Клетки могут “болеть” в результате любой из перечисленных причин, и для разных болезней человека разные причины становятся важнейшими.

Чтобы перейти к уровню органов и их систем, необходимо несколько пояснений.

Очень трудно представить себе картину эволюции как развития все более сложных организмов из простых. Несомненно, участвовали три компонента, показанные на схеме.

В процессе эволюции сначала изменение среды меняло “рабочие” функции “тела” при неизменных генах. При этом нужно учесть гибкость программ управления со стороны генов, обеспечивающую приспособление к среде, когда в некоторых пределах ее изменений удается осуществить рост и размножение. Можно говорить о “напряжении приспособительных механизмов”, когда жизнь идет на границе возможностей приспособления.

В генах закономерно происходят мутации. Или в них попадают новые гены от вирусов и микробов: геном изменяется. Чем энергичнее размножение, тем больше возможностей для проявления изменений, которые приводят программы управления организмом от генов в большее соответствие с требованиями среды. Эффективность изменчивости отрабатывается в ходе естественного отбора. Это обычная схема эволюции. По-ученому это звучит так: организация управления клетки меняется в ходе самоорганизации генома.

В самом начале эволюции меняющиеся физико-химические условия среды могли привести к тому, что поделившиеся клетки первых одноклеточных не разошлись, как им полагалось изначально, а остались связанными. Так возникли “колонии”. Это механическое изменение привело к изменению тел связанных друг с другом клеток – к асимметрии строения. В дальнейшем это закрепилось в генах, появилась новая строка “инструкции”, меняющая структуру клеток.

Дальше – больше. Образовались колонии с замкнутой внутренней средой, через которую клетки могли влиять друг на друга. Некоторые клетки потеряли связь с внешней средой и стали целиком зависимыми от внутренней среды. Одновременно шла так называемая дифференцировка, специализация клеток, разделение функций между ними.

Модель нормы и патология

Основные рабочие функции живого организма присущи всем одноклеточным. Это, прежде всего, энергетика обмена веществ – свои “электростанции”, вырабатывающие энергию из глюкозы, жирных кислот и аминокислот. Второе – пищеварение, захват частичек пищи и переваривание внутри клетки в специальных пузырьках – лизосомах. Третье – движение, есть и у одноклеточных – сократительные элементы. Четвертое – защита внутренней среды от внешней и связь с ней за счет действия специфических каналов, избирательно пропускающих различные вещества внутрь или наружу. Кроме того, на поверхности клетки существуют разнообразные рецепторы, способные захватывать и препровождать внутрь избранные сложные молекулы. Через каналы и рецепторы осуществляется “снабжение” части “рабочих” функций клетки, передаются управляющие сигналы.

Клетки многоклеточного организма совершенствовали и развивали отдельные функции одиночной клетки и таким образом сформировали органы: пищеварения, размножения, движения, восприятия раздражения, регулирования.

Особенное развитие в процессе эволюции получили органы управления. Они сформировались в несколько регулирующих систем, выполняющих различные функции. Мы выделяем четыре системы (рис. 3).

Первая регулирующая система (I PC) условно определена как “химическая неспецифическая” и представляет жидкую замкнутую среду организма – кровь и лимфу. Кровеносная система объединяет все органы посредством относительно простых химических веществ, например таких, как кислород, углекислота, глюкоза. Каждый орган получает и отдает в кровь то, что предназначено его “специализацией”.

Рис. 3. Схема организма

Вторая регулирующая система (II PC) представлена эндокринными железами. Они регулируют “обеспечивающие” функции организма с помощью гормонов. Эти химически активные вещества тормозят или активируют клеточные ферменты, а через них и большинство функций клеток. Гормоны действуют через I PC, через кровь и лимфу, а специализация регулируемых процессов определяется клетками-“мишенями”, обладающими особой чувствительностью к тем или иным гормонам.

Третьей регулирующей системой (III PC) является вегетативная нервная система, которая контролирует внутренние органы и главным образом уровень их специфической активности. Ее принцип действия отличается от предыдущей тем, что активирующие (или тормозящие) вещества (подобные гормонам) доставляются непосредственно к “адресату”, выделяясь в окончаниях нервных волокон непосредственно в органах“ мишенях”. То есть действует “адресная” система регулирования. Вегетативная нервная система состоит из двух отделов-антагонистов: симпатической и парасимпатической. Они управляют главным образом внутренними органами (“симпатикус” выделяет адреналин, “парасимпатикус” – ацетилхолин).

Наконец, четвертая регулирующая система (IV PC) носит название анимальной нервной системы и отвечает главным образом за связи организма с внешней средой. Ее клетки и структуры воспринимают и передают внешнюю информацию и управляют произвольными движениями. Высший ее “этаж” – кора мозга. В IV PC представлены также “датчики” – глаза, уши, рецепторы кожи, мышц, суставов и, в меньшей степени, внутренних органов, доставляющих к коре (к сознанию) избранную информацию о теле.

Регулирующие системы (PC) имеют “этажную” структуру. Например, в IV PC описывают кору мозга, подкорку, спинной мозг. В III PC можно выделить высшие вегетативные центры, ведающие обобщенными функциями, например питанием; “главные” центры, ведающие органами (кровообращение, дыхание), и местные нервные сплетения самих органов, регулирующие отдельные клетки. Эндокринная система (II PC) имеет несколько “этажей”: гипоталамус и гипофиз в подкорке головного мозга, большие эндокринные железы – надпочечник, щитовидная, половые, специфические клетки в “рабочих” органах. Даже I PC, и ту можно поделить на две: кровеносная и лимфатическая системы.

В функциональном отношении все регулирующие системы связаны между собой прямыми и обратными связями: “высшие” управляют “низшими”, но, в свою очередь, находятся под их обратными воздействиями. То есть типичная кибернетическая система управления.

Регулирующие клетки способны к тренировке при повышении функции, как и всякие другие. Для клетки это вполне физиологично, но в целом организме их повышенная тренированность может вызвать патологию, так как изменится характеристика регулятора, а следовательно, он будет “неправильно” управлять органом или функцией, например кровяным давлением.
<< 1 2 3 4 5 6 7 8 9 10 ... 22 >>
На страницу:
6 из 22