Оценить:
 Рейтинг: 3.6

100 великих событий XX века

Год написания книги
2006
<< 1 2 3 4 5 6 7 8 9 10 ... 15 >>
На страницу:
6 из 15
Настройки чтения
Размер шрифта
Высота строк
Поля
Генри Форд не был экономистом, но его инновационная стратегия производства оказала революционное влияние на производство промышленных товаров массового потребления и уровень жизни американцев.

1908

Взрыв на Подкаменной Тунгуске

Что произошло 30 июня 1908 г., в 7.15 утра по местному времени, в районе реки Подкаменная Тунгуска (Восточная Сибирь), до сих пор точно не известно. Разгадать эту загадку оказалось не по зубам не только рискованным путешественникам, но и ученым. Пока, по крайней мере. Зато версий возникло великое множество. Однако как-то уж так повелось, что мощнейший взрыв, сбивший с ног коров в сибирских деревнях за сотни километров от эпицентра, связывают с падением так называемого Тунгусского метеорита.

Начнем с того, что сомнениям не подвергается. В то летнее утро небо, по свидетельствам очевидцев, пересек ослепительно яркий болид. Некоторые свидетели, правда, утверждали, что несся он рывками и чуть ли не менял на ходу направление. При этом нечто тащило за собой довольно плотный пылевой или дымный шлейф, зависший в воздухе на несколько часов. После световой феерии раздался оглушительный взрыв, который был слышен в радиусе около 1000 километров. Сельские жители ощутили непривычное колебание пола под ногами, как при землетрясении; в некоторых избах с полок попадали крынки, висячие предметы стали раскачиваться. Воздушная ударная волна была такой силы, что с крыш полетела солома. Взрывная и сейсмические волны были зафиксированы в Иркутске, Петербурге и даже в Великобритании. В течение нескольких ночей после случившегося небо было настолько светлым, что даже в Лондоне можно было читать газету, не зажигая свечи.

Место падения Тунгусского метеорита

Хотя предполагаемый район падения «объекта» был вычислен очень быстро, по горячим следам происшедшее расследовать не удалось из-за труднодоступности места события. Впервые эпицентр удивительного явления был обследован в 1927 г. экспедицией советского минералога Леонида Кулика, обнаружившей в таежной чаще точку, от которой лес был повален в радиусе 15–30 километров, причем на уцелевших стволах (не сгнивших за столько лет) были видны следы своеобразных ожогов, а лежали они радиально, от единого центра лучами наружу. Очень любопытно было то, что даже в эпицентре ни одно дерево не сгорело – они выглядели так, как если бы кто-то уронил в траву тяжелый свинцовый шар. Остатков метеорита и метеоритного кратера обнаружено не было. Тротиловый эквивалент Тунгусского взрыва сравним с мощностью термоядерной бомбы. Во время одной из следующих экспедиций итальянские исследователи Галлео и Чеккини обнаружили в смоле поваленных деревьев аэрозольные частицы с необычным содержанием висмута, а также соединений вольфрама с кобальтом и свинца с бромом.

Плюс к тому, как говорится в сообщении Томского отделения Всесоюзного астрономо-геодезического общества от 1992 г., наблюдалось и «пиковое» повышение концентрации редкоземельных элементов, особенно иттербия, в образцах почв, собранных возле расчетного места вероятного выпадения вещества «метеорита». Отмечено также увеличение в том районе частоты мутаций сосны. Исследования радиоактивности почв дали странный результат – вблизи эпицентра, в отличие от кончиков «лепестков» той «ромашки», что была нарисована упавшими деревьями, фон был немного выше естественного. Впрочем, за прошедшие до первых замеров полвека уровень радиоактивности мог нормализоваться, аналогично уровням в местах некоторых единичных испытаний ядерного оружия.

Рассмотрим версии случившегося, от самых фантастичных до вполне земных. Поскольку ни обломков космического тела, ни воронки так и не нашли, скорее всего странное тело «рвануло», не долетев до земли. Причем летело оно, по свидетельствам очевидцев, практически зигзагами. В пользу такой версии говорит и тот факт, что объект двигался приблизительно с юга на север, в то время как вектор ожоговых повреждений дает азимут 95 градусов, то есть почти с востока на запад. Не верить наблюдателям феномена нельзя – во-первых, их было довольно много, а во-вторых, среди них был даже один политический ссыльный, человек с университетским образованием, который не должен был перепутать стороны света.

Еще более удивительно то, что объект начал «греметь» до своего появления перед очевидцами, то есть звуковая волна не следовала за ним, как это бывает с реактивными сверхзвуковыми самолетами, а предвосхищала его появление. То есть скорость объекта была небольшой. Возможно, было несколько болидов, но в этом случае непонятно, почему остальные никто не заметил.

Впрочем, сибирские ученые считают, что на необъятные просторы тайги чего только не падало. Но, в отличие, скажем, от Попигайской астроблемы (Попигай – река в Сибири, впадающая в Хатангскую губу; астроблема – термин, обозначающий геологическую структуру метеоритного кратера) на Подкаменной Тунгуске все было «не по правилам». Поэтому был сделан вывод о том, что нет оснований связывать Тунгусский феномен с падением небольшого астероида, тем более что с точки зрения астрономии астероидов на пути Земли в то злополучное утро попадаться не должно было, у этих космических тел свое расписание.

Тогда что? Есть еще один вариант – небольшая комета. Но детальный анализ векторной структуры поваленного леса показал, что тело после взрыва не прекратило существование, а продолжило свое движение со сверхзвуковой скоростью. Однако если учесть, что все кометные ядра состоят из космического льда, глыб замерзших газов плотностью около 1 г/см

и мелких камней, непонятно, как такой объект вообще мог сохраниться, подвергшись диким перегрузкам от трения об атмосферу и механическим воздействиям во время взрыва? Но куда более весомы другие аргументы против кометной версии. Лето 1908 года в Сибири было ознаменовано целым парадом оптических эффектов ночного и сумеречного неба. Его свечение, как свидетельствуют научные источники того времени, было вызвано, возможно, «внесением в верхние слои атмосферы тонкодисперсной материи кометного хвоста». Между тем с учетом баллистической траектории подозреваемой в Тунгусском феномене кометы ее хвост должен был бы лечь в направлении Канады через Северный полюс или в направлении Средней Азии, но никак не сползти в сторону Европы. Академик Фесенков добавляет, что частицы кометного шлейфа в силу их малых размеров должны были бы задержаться на высоте 200 км и выше и лишь затем парашютировать оттуда на протяжении достаточно долгого времени. Однако серебристые облака, которые позволили даже в туманном Лондоне проникнуться красой заполярных белых ночей, обитают на высоте около 80 километров.

На основе всего вышесказанного, включая прочность конструкции того, что ударило по Тунгусской тайге, версия итальянских ученых о том, что виной всему сгусток космической пыли, представляется малоубедительной. Они утверждают, что «объект» вторгся в земную атмосферу со скоростью 11 километров в секунду, рассредоточился и сгорел, а земной поверхности достигла только ударная волна. Близок к этому и другой вариант – в наши пределы вторгся метеорит, плотность которого была примерно равна плотности воды, и наделал «шуму», взорвавшись с мощностью 10–15 миллионов тонн тротила. Нечто подобное утверждал и советский ученый Г.И. Петров, который считал Тунгусское тело рыхлым, не более чем в 10 раз превышающим плотность воздуха у поверхности земли, то есть комом снега радиусом 300 метров, который испарился до соприкосновения с нею. А светлые ночи якобы были вызваны паром, отразившим солнечные лучи.

Взорвавшуюся в тайге космическую бомбу считали и сгустком антивещества, и пронзившей Землю маленькой «черной дырой». Ну, а самая, пожалуй, свежая гипотеза – вполне земного происхождения. 6 тысяч квадратных километров соснового леса были уничтожены, считает геолог из Новосибирска Владимир Епифанов, взрывом природного газа. Механика была такой: из-за локального землетрясения или геологического смещения земных пластов в коре образовалась трещина, в которую вырвались вперемешку с «голубым топливом» пыль и мелкая взвесь нефти. Скорее всего утечка началась дней за девять до основного события. Возникший аэрозоль смешался с кислородом воздуха и сосредоточился километрах в 5–6 над землей. А потом от самой обычной молнии все это могло воспламениться. Епифанов строит свои доказательства на том, что этот район богат газовыми и нефтяными полями, прикрытыми сверху, как крышкой, слоем базальта вулканического происхождения, образовавшегося 200 миллионов лет назад. Эпицентр Тунгусского взрыва будто бы находится как раз над кратером доисторического потухшего вулкана. Эту версию признали рабочей.

Астрофизик из Бонна Вольфганг Кундт, на которого ссылается немецкая газета «Frankfurter Rundschau», подсчитал на основе картины разрушений в тайге, что в атмосферу должно было быть выброшено не менее 10 млн тонн природного газа. Но как же тогда быть с облаками и перемещениями грохочущего объекта по небу?

Между тем, перебирая разнообразные объяснения Тунгусской аномалии, даже физики признают право на существование «альтернативных вариантов интерпретации события», о чем не раз было заявлено на больших конференциях. В переводе на обычный язык это означает, что они не очень возражают, когда энтузиасты начинают говорить об аварии инопланетного транспортного средства. А почему бы и нет? «Три луны» в древнеримских анналах были замечены еще в 222 г. до н. э., а русские летописцы упоминают, как нечто вроде звена летающих тарелок патрулировало Чудское озеро во время Ледового побоища.

Допустим, это была аварийная тарелка гуманоидов, которая, дымя на своем пути, просто не дотянула до поверхности планеты и взорвалась в воздухе… Но в таком случае, где обломки? С одной стороны, первое детальное, с анализами, исследование места катастрофы было проведено лишь спустя долгие годы – у пришельцев было полно времени, чтобы «убрать» за собой. С другой, если звездолет был на атомной тяге – какие вообще обломки можно искать в эпицентре воздушного термоядерного взрыва?

1910

Получение синтетического бутадиенового каучука

История каучука началась со времен Великих географических открытий. Когда Колумб вернулся в Испанию, он привез из Нового Света множество диковин. Одной из них был эластичный мяч из «древесной смолы», который отличался удивительной прыгучестью. Индейцы делали такие мячи из белого сока растения гевея, растущего на берегах Амазонки. Этот сок темнел и затвердевал на воздухе. Мячи считались священными и использовались в религиозных обрядах. У племен майя и ацтеков существовала командная игра с использованием мячей, напоминающая баскетбол.

Сок гевеи индейцы называли «каучу» – «слезы млечного дерева». От этого слова произошло современное название материала – каучук. Кроме эластичных мячей индейцы делали из каучука непромокаемые ткани, обувь, сосуды для воды, ярко раскрашенные шарики – детские игрушки.

Однако в Европе забыли про южноамериканскую диковинку до XVIII века, когда члены французской экспедиции в Южной Америке обнаружили дерево, выделяющее удивительную, затвердевающую на воздухе, смолу, которой дали название «резина» (по латыни resina – смола). В 1738 г. французский исследователь Ш. Кондамин представил в Парижской Академии наук образцы каучука, изделия из него и описание способов добычи в странах Южной Америки. С тех пор начались поиски возможных способов применения этого вещества. Во Франции изобрели удобные подтяжки и подвязки из сплетенных с хлопком резиновых ниток. А после 1823 г., когда шотландец Ч. Макинтош придумал прокладывать тонкий слой резины между двумя кусками ткани, начался настоящий «резиновый бум». Непромокаемые плащи из этой ткани, которые стали называть в честь их создателя «макинтошами», получили широкое распространение. Примерно в то же время в Америке стало модно в дождливую погоду поверх башмаков носить неуклюжую индейскую резиновую обувь – галоши.

Огромную, хоть и недолгую популярность в Европе и Северной Америке резиновые изделия получили после того, как англичанин Чаффи изобрел прорезиненную ткань. Он растворял сырую резину в скипидаре, добавлял сажу и, с помощью специально сконструированной машины, наносил тонкий слой смеси на ткань. Из такого материала делали не только одежду, обувь и головные уборы, но и крыши домов и фургонов.

Однако у изделий из прорезиненной ткани был большой недостаток – эластичность каучука проявляется лишь в небольшом интервале температур, поэтому в холодную погоду резиновые изделия твердели и могли растрескаться, а летом размягчались, превращаясь в липкую, издающую зловоние массу. Одежду и обувь на лето приходилось прятать в прохладный погреб, с прорезиненными крышами было хуже – приходилось терпеть неприятные запахи. Энтузиазм по поводу нового материала быстро иссяк. А когда однажды в Соединенных Штатах выдалось жаркое лето, наступил кризис резиновой промышленности – вся ее продукция превратилась в мерзко пахнущий кисель. Фирмы по производству резины разорились.

Центр каучуконосных районов, Манаус, был богатейшим городом Западного полушария

И все забыли бы про макинтоши и галоши, если бы не американец Чарльз Нельсон Гудьир, который верил, что из каучука можно создать хороший материал. Он посвятил этой идее несколько лет и потратил все свои сбережения. Современники смеялись над ним: «Если вы увидите человека в резиновом пальто, резиновых ботинках, резиновом цилиндре и с резиновым кошельком, а в кошельке ни единого цента, то можете не сомневаться – это Гудьир». Однако Гудьир упорно смешивал каучук со всем подряд: с солью, перцем, песком, маслом и в конце концов добился успеха. В 1839 г. он обнаружил, что, добавляя в каучук немного серы и нагревая, можно улучшить его прочность, твердость, эластичность и тепло— и морозоустойчивость. Сейчас именно новый материал, изобретенный Гудьиром, принято называть резиной, а открытый им процесс – вулканизацией каучука.

История упорного изобретателя имеет счастливый конец: предложение о покупке патента на новый материал, обладающий отличными качествами, Гудьир получил, находясь в отчаянном финансовом положении – у него к этому времени был долг в 35 000 долларов, который вскоре он смог вернуть. С этого времени начинается бурный рост производства каучука. Еще при жизни Гудьира только в резиновой промышленности США работало больше 60 000 человек. Кстати, в России, в Санкт-Петербурге, предприятие по производству резиновых изделий открылось в 1860 г. Вторая половина XIX века – время процветания Бразилии, которая долгое время была монополистом по выращиванию деревьев-каучуконосов. Центр каучуконосных районов, Манаус, был богатейшим городом западного полушария. Достаточно упомянуть, что великолепный оперный театр в затерянном в джунглях Манаусе не только строили лучшие французские архитекторы, но даже стройматериалы для него привозились из Европы.

Неудивительно, что Бразилия берегла источник своего богатства. Вывоз семян гевеи был запрещен под страхом смертной казни. Однако в 1876 г. британский шпион Генри Уикхем в трюме английского судна «Амазонас» тайно вывез 70 000 семян гевеи. В британских колониях Юго-Восточной Азии были заложены первые плантации каучуконосов. На мировом рынке появился натуральный английский каучук, более дешевый, чем бразильский.

А мир завоевывали разнообразные изделия из резины – транспортерные ленты конвейеров и электроизоляция, «резинки» для белья, резиновая обувь, детские воздушные шары и т. д. Но основное применение этот материал получил с изобретением и распространением резиновых экипажных, а затем автомобильных шин.

Изобретение резиновых шин вместо металлических сначала было встречено без энтузиазма, хотя экипажи с металлическими шинами были не слишком комфортны – за страшный шум и тряску в Англии их называли «истребителями воробьев». Новые тихие экипажи на цельнолитых массивных шинах в Америке были запрещены. Они считались опасными, так как не предупреждали прохожих о приближении экипажа. В России тихие конные экипажи на резиновом ходу также вызывали недовольство – они обдавали грязью не успевших посторониться пешеходов. Поэтому московские власти вынесли решение специально помечать такие экипажи номерными знаками особого цвета: «Дабы обиженные шинниками обыватели могли заметить своих обидчиков, чтобы привлечь их к законной ответственности».

С изобретением конвейерного метода сборки автомобилей потребность в резине стала настолько велика, что настоятельно возник вопрос об ограниченности производства природного сырья. Надо было искать другие источники каучука. Поэтому неудивительно, что в конце XIX – первой половине XX вв. во многих странах исследовались строение каучука, его физические и химические свойства, процесс вулканизации. К. Харриес считал, что каучук состоит из множества колец-звеньев изопрена, которые составляют устойчивую мицеллу, т. е. представляет собой обычную коллоидную частицу. Оппонентом К. Харриеса выступал Г. Штаудингер, доказавший, что каучук является высокомолекулярным соединением, т. е. состоит из обычных, хотя и гигантских молекул, атомы в которых связаны ковалентными связями. На основании своих исследований каучука и резины он выдвинул теорию цепного строения макромолекул, предположил существование разветвленных макромолекул и трехмерной полимерной сетки.

Для получения натурального каучука млечный сок гевеи (латекс) добывают методом подсечки, надрезая кору дерева. Натуральный латекс, представляющий собой водную эмульсию каучука, содержит 34–37 % каучука, 52–60 % воды, а также белки, смолы, углеводы и минеральные вещества. Из латекса каучук коагулируют органическими кислотами, промывают водой и прокатывают в листы, которые сушат и коптят дымом. Копчение предохраняет каучук от окисления и действия микроорганизмов.

В натуральном каучуке содержится 91–96 % углеводорода полиизопрена, а также белки и аминокислоты, жирные кислоты, каротин, небольшие количества солей меди, марганца, железа и др. примеси.

Интересно, что существует природный геометрический изомер каучука – гуттаперча, представляющая собой транс-1,4-полиизопрен.

Различия в пространственном расположении заместителей у каучука и гуттаперчи приводят к тому, что и форма макромолекул этих веществ тоже различна. Молекулы каучука закручены в клубки. Если ленту из каучука растягивать, деформировать, то молекулярные клубки будут выпрямляться в направлении прилагаемой силы, и лента будет удлиняться. Однако молекулам каучука энергетически выгоднее находиться в первоначальном состоянии, поэтому, если натяжение прекратить, молекулы опять свернутся в клубки, и размеры ленты станут прежними. Конечно, нельзя увеличивать нагрузку на ленту до бесконечности – рано или поздно деформация будет необратимой, лента порвется.

Молекулы гуттаперчи не закручены в клубки так, как в каучуке. Они вытянуты даже без нагрузок, поэтому гуттаперча менее эластична.

Эластичность – это способность к обратимой деформации, особое свойство некоторых полимеров, характерное лишь при определенных значениях температур. При нагревании каучук из эластичного состояния переходит в вязко-текучее. Силы взаимодействия между молекулами ослабевают, полимер не сохраняет форму и напоминает очень вязкую жидкость. При охлаждении же каучук из эластичного переходит в стеклообразное состояние, становится похож на твердое тело. Такой полимер не растягивается легко и обратимо при приложении нагрузки. Он сразу рвется, если нагрузка слишком велика. Полимеры в стеклообразном состоянии могут быть хрупкими, их можно сломать или даже разбить, например, морозной зимой может растрескаться сумка из кожзаменителя.

Что же происходит с каучуком при вулканизации? Когда каучук нагревают с серой, макромолекулы каучука «сшиваются» друг с другом серными мостиками. Из отдельных макромолекул каучука образуется единая трехмерная пространственная сетка. Изделие из такого материала (резины) прочнее, чем из каучука, и сохраняет свою эластичность в более широком интервале температур.

С появлением технологии производства синтетических каучуков резиновая промышленность перестала быть всецело зависимой от природного каучука, однако синтетический каучук не вытеснил природный, доля натурального каучука в общем объеме производства каучука составляет 30 %. Ведущие мировые производители натурального каучука – страны Юго-Восточной Азии (Таиланд, Индонезия, Малайзия, Вьетнам, Китай). Благодаря уникальным свойствам натуральный каучук незаменим при производстве крупногабаритных шин, способных выдерживать нагрузки до 75 тонн. Лучшие фирмы-производители изготавливают покрышки для шин легковых автомобилей из смеси натурального и синтетического каучука, поэтому до сих пор главной областью применения натурального каучука остается шинная промышленность (70 %). Кроме того, натуральный каучук применяется при изготовлении конвейерных лент высокой мощности, антикоррозийных покрытий котлов и труб, клея, тонкостенных высокопрочных мелких изделий, в медицине и т. д.

Во многих странах в начале XX в. изучались местные виды растений-каучуконосов. В Советском Союзе систематический поиск таких растений предпринимался в 1930-х гг., общий их список составил 903 вида. Наиболее эффективные каучуконосы, в частности тянь-шанский одуванчик кок-сагыз, выращивали на полях России, Украины, Казахстана, работали заводы по выделению каучука, который по качеству не уступал каучуку из гевеи. В конце 1950-х гг. с увеличением производства синтетического каучука возделывание одуванчика-каучуконоса было прекращено.

Исследованиями в области получения синтетического каучука на рубеже XIX–XX вв. занимались многие научные лаборатории мира. Этому способствовал не только бурный рост потребления натурального каучука, но и географические факторы. Страны, удаленные от экваториальной зоны, попадали в зависимость от импорта.

Впервые каучукоподобное вещество при обработке изопрена (2-метилбутадиена-1,3) соляной кислотой получил в 1879 г. французский химик Г. Бушарда. Русский химик И. Кондаков (г. Юрьев) синтезировал эластичный полимер из диметилбутадиена в 1901 г. Первые промышленные партии синтетического каучука – диметилкаучука – были выпущены на основе разработок Кондакова в 1916 г. в Германии. Было получено около 3000 т синтетического каучука, из которого изготовляли аккумуляторные коробки для подводных лодок, однако широкого распространения диметилкаучук не получил, и его производство было прекращено.

Основателем первого в мире крупномасштабного производства синтетического каучука по праву считается русский ученый С.В. Лебедев, посвятивший проблеме полимеризации диенов значительную часть своей научной деятельности. Он впервые получил синтетический бутадиеновый каучук в 1910 г. А магистерская работа Лебедева, посвященная исследованию кинетики полимеризации дивинила (бутадиена-1,3) и его производных, в 1914 г. была удостоена премии Российской академии наук. К процессу полимеризации бутадиена Лебедев вернулся в 1932-м, когда правительство СССР объявило конкурс на разработку промышленного производства синтетического каучука. Лебедевым и его сотрудниками был успешно разработан недорогой и эффективный метод.

Благодаря работам Лебедева промышленное широкомасштабное производство синтетического каучука было начато в Советском Союзе в 1932-м – впервые в мире (следующей была Германия, которая начала производить синтетический каучук только в 1936-м). Значение этого события трудно переоценить: возможность оснастить отечественную технику шинами собственного производства сыграла важную роль в Великой Отечественной войне.

С 1932-го и вплоть до 1990 г. СССР по объемам производства синтетического каучука занимал первое место в мире. И сегодня Россия сохраняет позиции экспортера мирового значения. На внутреннем рынке остается примерно половина продукции. Основными потребителями синтетического каучука являются шинные заводы, а около 40 процентов каучука идет на широкий ассортимент резинотехнических изделий, среди которых наиболее заметное место занимают технические изделия из мягкой резины, подошвы для обуви, ленточные транспортеры, разнообразные трубы и шланги всех видов, электроизоляция, герметики, клеи и краски на латексной основе.

1912

Открытие Южного полюса

В феврале 1913 г. известный норвежский полярный исследователь Руаль Амундсен заявил в связи с гибелью английской полюсной группы во главе с Робертом Скоттом: «Я пожертвовал бы славой, решительно всем, чтоб вернуть его к жизни. Мой триумф омрачен мыслью о его трагедии, она преследует меня».

Чем же была вызвана такая реакция норвежца? Какие события этому предшествовали? Что объединяло этих двух людей из разных стран?

<< 1 2 3 4 5 6 7 8 9 10 ... 15 >>
На страницу:
6 из 15