ЭО элементов традиционно используются для определения типа гетероядерной химической связи [54,55]. Их использование базируется на концепции поляризации химической связи, усиливающейся по мере увеличения разности ЭО элементов (ионов), образующих данное соединение. Эта концепция базируется на как будто весьма очевидном допущении – увеличение разности ЭО приводит к «перетягиванию» локализованного электронного облака связывающих электронов к более электроотрицательному элементу. Но этот подход не учитывает металлическую составляющую гетероядерной химической связи, которая в общем случае должна рассматриваться как ионно-ковалентно-металлическая. Необходимость учитывать «степень металличности» (С
) в соединениях отметили Музер и Пирсон [56,57—59]. Однако в последующие годы на это обстоятельство обращали внимание лишь отдельные исследователи [51, 60, 61—64], тогда как подавляющее число авторов оставались на ортодоксальных поляризационных позициях рассмотрения ХСв, ограничивая ее вариации определением степени ионности (С
) (степени ковалентности (С
)), считая ее прямо зависящей только от разности ЭО атомов (ионов), образующих то или иное определенное вещество.
Также от ЭО зависит такая фундаментальная характеристика ХСв, как ее С
, а, следовательно, прочность связи, тип структуры, особенности химического состава. ЭО в сочетании с другими факторами является решающей в формировании конкретных значений большинства физических и физико-химических свойств. С
возрастает при уменьшении разности ЭО соответствующих элементов [65].
С помощью ЭО вычисляются, например, такие характеристики, как температура Кюри [66]. Увеличение температуры Кюри по мере увеличения ЭО ионов объясняется усилением С
образуемой ими химической связи, а также их различий, связанных с числом валентных электронов с орбитальным квантовым числом l?1 и интегралом перекрывания орбиталей этих электронов с валентными орбиталями кислорода [66]. Все это обеспечивает повышенную устойчивость таких связей к воздействию дестабилизирующих факторов, в частности, температуры. Установленные зависимости могут рассматриваться как основа для прогнозирования свойств и поиска новых высокотемпературных сегнетопьезокерамических материалов [67].
В 1991 году была предпринята попытка использовать концепцию ЭО Полинга применительно к анализу сверхпроводящих веществ [68].
Таким образом, из выше изложенного видно, что от ЭО зависит такая фундаментальная характеристика химической связи, как ее С
, а, следовательно, прочность связи, тип структуры, особенности химического состава. ЭО в сочетании с другими факторами является решающей в формировании конкретных значений большинства физических, физико-химических и физико-механических свойств. С
возрастает при уменьшении разности ЭО соответствующих элементов.
1.6. Расчет компонент химических связей
1.6.1. Гомоядерные (металло-ковалентные) химические связи
Законы движения микрочастиц в квантовой механике выражаются уравнением Шредингера. В квантово-механической теории одновременно развивались два разных метода приближённого решения уравнения Шредингера для случая молекул:
Метод валентных связей (ВС), который рассматривает волновую функцию, описывающую движение обобществлённой пары электронов с противоположно направленными спинами, образующих связь в молекуле.
Теория молекулярных орбиталей (МО), которая исходит из положения, что любая молекула характеризуется набором молекулярных орбиталей, охватывающих всю молекулу в целом и делокализованных между атомами. Обе теории в своих приближениях дают достаточно верные результаты. Каждая из этих теорий при описании имеет свои преимущества и недостатки [69]. Сначала квантово-механические расчеты производились с использованием метода МО, так как его расчётная схема удобна и универсальна. Затем стало укрепляться мнение, что локализованное описание более удобно с расчётной точки зрения. К тому же в ряде случаев открывались новые возможности для структурно-химического исследования отдельных взаимодействий, например, в изучении механизмов химических реакций, где локализованное описание облегчает идентификацию отдельных структурно выделенных стадий химического превращения [70]. В последнее время наблюдается сближение обоих методов.
Учёт резонансных структур вводит в метод ВС элементы делокализации; учёт конфигурационного взаимодействия в методе МО приводит к более локализованным структурам. Так в методе молекулярных орбиталей линейной комбинации атомных орбиталей (МО ЛКАО) упорядоченные по энергии МО образуют канонический номер орбиталей. Канонические МО можно преобразовывать в локализованные орбитали, применяя различные критерии локализации [71].
При квантово—механическом изучении структуры молекул широко применяют фрагментарный подход, когда молекула рассматривается как система связанных между собой фрагментов, в качестве которых выбираются такие химические частицы, которые сохраняют в основном свои свойства и геометрическую структуру в разных молекулах. Тогда образование химических связей между фрагментами описывается через взаимодействие фрагментальных орбиталей. Ещё одним методом получения информации о локализуемости электронов из электронной волновой функции, описывающих систему, является теория лоджий [71], согласно которой химическая связь представляет собой некоторую область общего объёма молекулы, окружающую два или более соседних атомных остова, в которых флуктуация числа электронов мала. В металлах кроме катионов, связанных «электронным газом», присутствуют электронейтральные атомы, которые могут объединяться частью «электронного облака» с определенной локализацией ЭП между ними и в результате непрерывного обмена валентных электронов, позволяющей образовывать в структуре металлических соединений связи между электронейтральными атомами. Это означает, что даже «чисто металлические связи» обладают некоторой С
[7]. Таким образом, можно сделать вывод, что большинство гомоядерных химической связи может одновременно характеризоваться определенной степенью локализации и делокализации, то есть не может рассматриваться как «чисто металлическая» или «чисто ковалентная». Можно вести речь лишь о соотношении локализации и делокализации, например, соотношении ковалентности и металличности [36,72], где для оценки С
или С
соединения в качестве индивидуальной характеристики природы атома элемента возможно использования ЭО – Х или первого ПИ – I
[36,72]. Отмечается, что увеличение суммарного атомного номера атомов соединения приводит к увеличению С
Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера: