Оценить:
 Рейтинг: 0

Силы притяжения, действующие на тело внутри диска

Год написания книги
2021
<< 1 2 3 >>
На страницу:
2 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля

Рис.2.4. Диск с гиперболической функцией плотности и отсечённым верхом, максимумом имеет кривую вращения, довольно сильно приближенную к наблюдаемой кривой вращения галактики Млечный Путь

Рис.2.5. Небольшой выступ на графике плотности ведёт к сильному искажению, всплеску на кривой вращения

Небольшая площадка в области r = 4,5 привела к довольно серьёзной деформации кривой вращения. Пробуем скачкообразно изменить плавность изменения плотности в конце графика, после r = 8.

Плотность была сформирована фактически из двух интервалов (скачок на 8). До 8 показатель степени в уравнении (2.1) n = 0,5, после 8 показатель n = 0,3. Пик на кривой вращения оказался весьма крутым. На графике силы Fx этот скачок существенно меньше, что объяснимо его квадратичной зависимостью. Заметим, что график плотности в конце диска имеет ненулевое значение.

Рис.2.6. Ступенька на графике плотности ведёт к сильному искажению, пику на кривой вращения

Считая, это не совсем верно, вносим небольшую корректировку в уравнение плотности, сделав её значение на краю диска равной нулю

Формируем новый интервал n = 0,45 после r = 8 и строим диаграммы. Скачок привел к немного уменьшенному эффекту, но по-прежнему с заметным пиком на кривой вращения.

Рис.2.7. Пик на кривой вращения возникает при любой, даже самой малой ступеньке на графике плотности

Эффекты явно вызваны скачком плотности. Пробуем заменить скачок в r = 8 плавным переходом и для сравнения добавляем скачки на r = 5 и на r = 9,2.

Рис.2.8. Плавный изгиб, переход на графике плотности ведёт к такому же плавному изгибу на кривой вращения

Просматривается закономерность: скачки плотности всегда приводят к появлению пиков на кривой вращения. Напротив, плавный переход на функции плотности приводит к такому же плавному изгибу кривой вращения. Для новой проверки делаем в области r = 5 параболическую выпуклость на функции плотности. С полученной функцией плотности фрагмент кривой вращения приобрел вид

Рис.2.9. Плавный параболический изгиб на графике плотности привёл к значительному, но плавному изгибу на кривой вращения

На графике видно, что в точке излома функции плотности на кривой вращения также образуется заметный излом. Но плавность изменения функции плотности по-прежнему приводит к плавному изменению кривой вращения. При этом можно предположить, что на интервале неизменности функции плотности кривая вращения растёт. Общая тенденция к уменьшению значения плотности ведёт к такому же уменьшению и величины скорости на кривой вращения.

3. Подбор функции плотности

Можно отметить, что использование гладких аналитических кривых для функции плотности даёт сглаженное, плавное приближение к кривой вращения Млечного Пути, её графику, формирует достаточно плавную кривую на всём её протяжении. Иначе говоря, переменная плотность позволяет получить кривые вращения с различным уклоном. Таким образом, следует предположить, что можно построить кривую вращение любой формы, в том числе, и максимально похожую на кривую вращения галактики Млечный Путь. В самом деле, спиральный диск галактики вполне можно рассматривать как сплошной, но имеющий переменную плотность вещества.

Проведенные вычисления достаточно отчётливо показали такую возможность корректировки кривой вращения изменением функции плотности. Однако сложность подбора функции плотности, в свою очередь, показала, что для дальнейших построений требуется разработать какой-то механизм, процедуру, облегчающие формирование функции плотности.

Функция плотности, как и все графики на диаграммах, в наших вычислениях состоит из 1000 точек, поэтому изменить их все вряд ли возможно и необходимо. Поэтому мы делим весь интервал функции на 10 участков, на которых криволинейный график функции плотности заменяем прямыми линиями. Использование вместо прямых линий парабол или гипербол оказалось неоправданно сложным, поскольку в некоторых случаях изломы сохранялись и даже возникали неестественные отклонения.

Изменения производим в узлах этих прямолинейных участков, в точках излома, соединения линий. Используем 11 точек, совпадающих с линиями сетки графика: r

, r

, r

…r

. Графику плотности в начальной части присваиваем ещё один параметр – значение максимума, пика графика.

Каждый участок задаём координатами начала и конца (x

y

 – x

y

). Уравнение линии определяем по этим точкам. Сначала находим коэффициент наклона прямой

Свободный член находим из первого уравнения

Система уравнений для построения обобщенно имеет вид

В первом варианте на начальном интервале мы использовали параболическую кривую, подобранную ранее. Для формирования рабочей функции плотности была использована исходная функция плотности (2.1), график которой после аппроксимации отрезками прямых приобрёл следующий вид

Рис.3.1. Исходная функция плотности

Используя этот график плотности диска, до его коррекции строим исходную кривую вращения.

Рис.3.2. Кривая вращения по исходной функции плотности

Отмечаем, что кривая вращения явно, сильно отличается от кеплеровской. Теперь вносим изменение в функцию плотности. Для начала корректируем точку x

Рис.3.3. Кривая вращения после деформации исходной функции плотности

Изменение кривой вращения видны достаточно отчётливо. Напомним, что нас интересует функция плотности, приводящая к кривой вращения нашего диска, подобной наблюдаемой кривой вращения галактики Млечный Путь. Последовательно, интуитивно вносим изменения в другие точки функции плотности. График формируемой кривой вращения заметно приближается к кривой вращения галактики.

Рис.3.4. Первое приближение кривой вращения к эталону

Поскольку пик кривой вращения диска был заметно смещён вправо от пика кривой вращения галактики Млечный Путь, мы увеличили пик плотности диска до 50. Смещение уменьшилось. На следующих рисунках приведены результаты других последовательных эмпирических приближений, подгонки функции плотности

Рис.3.5. a)…д) – последовательные приближения кривой вращения v(r) диска к эталону – кривой вращения v

(r) галактики Млечный Путь

На рис.3.5а)…д) приведены кривые вращения диска и соответствующие им функции плотности, полученные в результате их последовательной деформации. Кривые вращения заметно приблизились к кривой вращения галактики Млечный Путь. Пробуем ещё точнее сблизить графики. Заключительный этап такого подбора приведён на следующем рисунке. Как видим, кривая вращения диска выглядит довольно близкой к наблюдаемой кривой вращения галактики Млечный Путь

Рис.3.6. Подобранная функция плотности ?(r) и соответствующая ей кривая вращения v(r) приемлемо, максимально совпадающая с эталонной, наблюдаемой кривой вращения v

(r) галактики Млечный Путь

Результат, совпадение кривых вращения на рис.3.6 следует признать хорошим. Некоторые специфические отклонения в начале и конце кривых можно объяснить. На начальном этапе достичь хорошей точности не позволяет дискретность графика. Первые 10 точек выводятся с погрешностью от 10 до 200%. Например, различия между первым и вторым шагами двукратные. В конечной точке график кривой вращения диска связан со сложностью подбора функции плотности. Интервал слишком длинный для достаточно подробной детализации функции.

Вместе с тем следует учесть и ещё одно немаловажное обстоятельство: аппроксимируемая наблюдаемая кривая вращения галактики Млечный Путь сама построена с довольно большой погрешностью.

Из проведённых вычислений можно сделать вывод. Следует признать принципиальную возможность формирования такой функции плотности диска, изменения его радиальной плотности, которая позволяет получить любую заданную наперёд форму кривой вращения. В частности, сформированная выше вполне реальная функция плотности диска позволяет получить кривую вращения, предельно совпадающую с наблюдаемой кривой вращения галактики Млечный Путь. Следовательно, существуют такие же функции плотности диска, соответствующие кривым вращения других галактик.

Что непосредственно касается взятой за эталон галактики Млечный Путь, то построить для неё фактическую функцию плотности, видимо, технически возможно. Судя по всему, необходимые для вычислений основные параметры всех её составляющих известны: координаты звёзд и их массы. Вполне возможно построить график сил, действующих на некоторую звезду, параметры движения которой, предположительно, не соответствуют законам Кеплера. Понятно, что для этого потребуется произвести вычисления её силовых взаимодействий с несколькими миллиардами остальных звёзд галактики. Такие вычисления являются эквивалентом расчётов по плотности, причём в них усреднённая плотность представлена в точном дискретном виде, в виде пар звезда-звезда. Серьёзную трудность при таких расчётах составит, видимо, учёт масс газопылевых объектов. Вычисленная сила для проблемной звезды даст точное значение её фактической скорости, соответствует ли она её устойчивому орбитальному движению.

4. Функция массы диска М(r)

Помимо кривой вращения функция плотности позволяет построить также и график распределения массы объекта. Проведём сравнительный анализ поведения массы диска, сравним аналитическое и численное интегрирование функции массы: как зависит полная и частичная масса диска от функции его плотности. Исследуемый диск имеет в общем случае переменную радиальную плотность, зависящую от удалённости от центра. В случае переменной плотности дифференциал массы, масса элементарного участка диска определяется в следующем виде

Найдём частичную массу диска, его внутренней дисковой части некоторого радиуса Rx, то есть, радиальное распределение массы. Эта масса, очевидно, нарастающая, чем больше радиус Rx, тем больше масса. Используя дифференциал (4.1), массу можно найти интегрированием, указав радиус диска R
<< 1 2 3 >>
На страницу:
2 из 3