Оценить:
 Рейтинг: 3.67

Математика для гиков

Год написания книги
2015
Теги
<< 1 2 3 4 5 >>
На страницу:
2 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля

Есть что-то странное в фракталах (см. главу 1.4), это трудно объяснить, но легко показать на примерах. Одним из таких примеров является снежинка Коха, форма которой основана на кривой Коха, которая впервые была упомянута шведским математиком Нильсом Фабианом Хельге фон Кохом. Чтобы создать снежинку Коха, для начала нужно взять равносторонний треугольник (тот, у которого все стороны имеют одинаковую длину). Теперь поделите каждую сторону на три равные части. Используя среднюю часть каждой стороны, образуйте другой равносторонний треугольник остриями наружу так, что эта средняя часть станет его основанием. Продолжайте процесс бесконечно.

В результате такого процесса возникает странное явление: в итоге получается, что снежинка Коха имеет бесконечную длину. Каждый раз, когда вы создаете треугольник посередине одной из сторон снежинки, вы увеличиваете длину на одну треть. А так как процесс продолжается бесконечно, так и периметр снежинки увеличивается бесконечно.

Вот еще один странный результат: несмотря на то, что периметр увеличивается безгранично и становится все больше и больше, пространство, которое занимает снежинка, – хоть и постоянно увеличивается – имеет границу. Если представить круг, нарисованный вокруг изначального треугольника, то станет ясно, что снежинка Коха никогда не выйдет за пределы этого круга. Она может приблизиться к кругу, но никогда не выйдет за его пределы. Поэтому в каком-то смысле математический объект с бесконечной длиной окружен конечной площадью. Странно!

Фрактал Cesaro

Некоторые фракталы формируются не путем добавления, а путем удаления. Снежинка Коха создается путем добавления пиков к центру сегментов линий, а чтобы создать вид под названием фрактал Cesaro, нужно эти пики убрать. Результатом будет снежинка, которая будет выглядеть, будто ее пожевала акула. Однако в итоге чем сложнее они обе будут становиться, тем более похожими они станут для человеческого глаза.

1.6. Вы живете в четвертом измерении?

Математические понятия: бутылки Клейна, геометрия, топология

Бутылки Клейна странные. Позвольте мне объяснить как следует. Чтобы их понять, нужно представлять четвертое измерение – пространство, которое существует под прямым углом к нашему трехмерному пространству, – и хоть они и странные, бутылки Клейна могут содержать секрет судьбы нашей вселенной.

Бутылка Клейна впервые была описана немецким математиком Феликсом Клейном в 1882 году, ее оригинальное название звучало как Kleinsche Fl?che, что в переводе с немецкого значит «пространство Клейна», но скорее всего было перепутано с Kleinsche Flasche, отсюда и название – «бутылка Клейна». В любом случае, это название и закрепилось. Бутылка Клейна представляет собой поверхность – двухмерная труба, – и, подобно шару, бутылка Клейна не имеет границ. Она также является неориентируемой поверхностью, то есть направления будут меняться по ходу движения вдоль поверхности.

Но бутылки Клейна получили известность по другой причине: у них нет внутренней и внешней сторон. Они попросту сливаются в одно пространство. (Бутылку Клейна можно назвать аналогом ленты Мебиуса (см. главу 1.7), у которой есть только одна сторона. На самом деле, если разрезать бутылку Клейна пополам, то в итоге получатся две ленты Мебиуса.) Еще одним известным фактом является то, что бутылка Клейна не может существовать в трехмерном пространстве. Чтобы, скажем, создать ее из листа бумаги, вам для начала нужно будет сложить из него цилиндр. Затем вместо того, чтобы соединить оба конца друг с другом, образуя пончик, вы скручиваете один конец. А это невозможно сделать, если не «поднять» один конец цилиндра в четвертое измерение. Так как мы живем в трехмерном пространстве, лучшее, что мы можем сделать – это продеть один конец сквозь цилиндр и соединить скрученный конец с другим концом. Полученная фигура проходит сама через себя, но если бы мы были жителями четырехмерного пространства, то бутылка Клейна вовсе не пересекала бы саму себя.

Чтобы понять почему, представьте, что вы живете в двухмерном пространстве. Теперь представьте, что в этом пространстве есть ограниченная линия, вроде двухмерной веревки. Если кто-нибудь попросил бы вас сложить из нее цифру восемь так, чтобы веревка не пересекала себя, то вы бы понятия не имели, как это сделать. Как такое может быть возможно? Чтобы это сделать, вам нужно было бы «приподнять» линию в трехмерное пространство; в этом случае фигуру можно было создать без пересечения.

Вернемся к связи между бутылками Клейна и судьбой вселенной. Будущее вселенной – включая судьбу звезд, галактик и даже самого космоса – зависит отчасти от общего вида вселенной. Ученые называют множество возможных форм вселенной, которые были бы совместимы с их наблюдениями: некоторые формы напоминают лист бумаги, который бесконечно простирается во всех направлениях – трехмерное пространство, известное как Евклидово пространство с размерностью, равной 3, – другие же «замкнуты», это значит, что хоть они и очень большие, они в конце концов замыкаются. (Примером такой замкнутой фигуры является шар. Если вы начнете идти от одной точки на поверхности шара и будете идти по прямой, то непременно вернетесь на начальную позицию.) Однако насколько нам известно, вселенная может принимать разные формы. Мы живем на сферическом объекте, но наша окружающая обстановка подсказывает нам, что мы живем на бесконечно большой плоской равнине, то место, где мы живем во вселенной, дает нам основание полагать, что вселенная простирается по прямым линиям во всех направлениях, но на самом деле на расстояниях, за которыми мы не можем наблюдать, вселенная может выглядеть как седло или цилиндр. Или же она может иметь форму бутылки Клейна.

Так что если вы думали, что четвертое измерение не имеет никакого отношения к вашей повседневной жизни – подумайте еще раз. В действительности вы можете в нем жить.

Феликс Клейн

Родился в 1849 году, преподавал математику в Геттингенском университете и проявлял небывалый интерес к геометрии. Он также был известен своим браком с внучкой философа Георга Вильгельма Фридриха Гегеля!

1.7. Построим более эффективную конвейерную ленту

Математические понятия: лента Мебиуса, топология

В математике маленькие вещи могут иметь большие последствия. Возьмите, например, полоску бумаги любой длины. Держите концы этой полоски в разных руках и поверните ее на 180 градусов. Теперь приклейте концы друг к другу. Вы только что создали настоящий математический парадокс из простых канцтоваров. Объект, который вы сделали, называется лентой Мебиуса.

Ленты Мебиуса – особое явление в математике, так как они неориентируемые, то есть имеют лишь одну сторону. Это может прозвучать как что-то невообразимое, но вы сами можете доказать ее односторонность. Возьмите карандаш и начинайте чертить линию в любой точке ленты. (Убедитесь, что вы чертите линию, параллельную ленте, чтобы карандаш не сошел с бумаги.) В конце концов карандаш вернется на начальную позицию. А что особенно важно, так это то, что черта остается на всей поверхности ленты. Если бы у ленты было две стороны – внешняя и внутренняя, – то карандашная линия была бы только на одной из сторон, вторая осталась бы нетронутой.

Этот странный односторонний объект похож на экзотику – он таковым и является, – но ленты Мебиуса время от времени встречаются и вне книг по математике и классных досок. Например, в 1957 году компания B.F. Goodrich создала конвейерную ленту Мебиуса. Такой способ позволял ленточному конвейеру работать дольше, так как вся поверхность ленты изнашивалась равномерно. Те же цели преследовали и некоторые магнитофонные ленты и ленты для пишущих машинок: эта форма позволяла использовать максимум поверхности лент, что повышало их практичность. Ленты Мебиуса также есть и в мире электроники – а именно в некоторых резисторах (что позволяло им противостоять потоку электроэнергии) – и в биологии: некоторые конфигурации молекул имеют структуру ленты Мебиуса.

Лента Мебиуса была названа в честь Августа Фердинанда Мебиуса, немецкого математика, жившего в XIX веке, который ее и изобрел. (Оказалось, что та же лента была изобретена практически в то же самое время другим немецким математиком, Иоганном Бенедиктом Листингом, который ввел в использование математический термин «топология».) У Мебиуса была отличительная родословная: его предком был Мартин Лютер, один из богословов, который помог начать Реформацию в начале XVI века, а еще он учился вместе с Карлом Фридрихом Гауссом, одним из самых выдающихся математиков в истории.

Лента Мебиуса служит отличным примером простого объекта, который может сделать каждый, но который имеет глубокий математический подтекст. И нет ничего лучше, чем держать математику в своих руках.

Музыкальные аккорды

Музыка и математика имеют интересную связь. Теоретики музыки иногда изображают на бумаге, как различные аккорды из двух нот связаны друг с другом, принимая во внимание то, что можно записывать их двумя способами (C-F или F-C, например). Чтобы показать эту связь на листе бумаги, нужно скрутить его и сделать из него ленту Мебиуса.

1.8. Математическая связь между вашими шнурками и вашей ДНК

Математические понятия: теория узлов, кривые

Вы не ожидаете найти математику в паре ваших ботинок. Но поглядите вниз на ваши завязанные шнурки. Эти перевязанные узлы на самом деле могут привести к сложным математическим мыслям.

Этот раздел математики известен как теория узлов. Узлы в математике, однако, отличаются от узлов в вашей повседневной жизни одним значимым способом: у них нет свободных концов, то есть они замкнуты. На самом деле, вы можете сделать такой узел самостоятельно. Возьмите кусок веревки – или сваренные спагетти, или лассо – и завяжите обычный узел. Теперь возьмите концы и соедините их с помощью скотча. В итоге у вас может получиться крендель, но в любом случае это будет математический узел!

И хотя отчасти теория узлов хорошо нам знакома, в ней есть свои особенности. В своей книге об узлах Колин Адамс дал следующее определение узлу в математике: «это замкнутая кривая в пространстве, которая не пересекает себя ни в одной точке». Такое определение может натолкнуть вас на мысль о том, какой же узел является простейшим. Таким узлом является простая окружность, такой узел называют «незаузленным». (А еще его называют тривиальным.) Также самыми простыми узлами являются «восьмерка» и «трилистник».

Что конкретно происходит в течение одного дня теоретика, занимающегося узлами? Они обычно стремятся узнать, можно ли развязать тот или иной узел, не разрезая его, или можно ли определить, что узел на самом деле является тривиальным, но в необычной форме. Но теория узлов больше волнует не математиков вовсе. Биологи интересуются теорией узлов из-за ДНК – молекулы, которая кодирует материалы, необходимые для всех живых организмов, – которая иногда может содержать узлы, а они, в свою очередь, могут влиять на то, как информация в молекуле ДНК может интерпретироваться клеточными механизмами организма. Химики также заинтересованы в узлах. Многие из них хотели бы разобраться со сцепленными молекулами, так как в зависимости от узла определенная молекула может совершенным образом поменять свое поведение. (При одной конфигурации вещество может вести себя как масло, а при другой – как гель.) Даже один или два поворота могут иметь существенные последствия.

Гипотезы Тейта

Математик XIX века Питер Гатри Тейт создал классификацию узлов, согласно количеству их пересечений. Он также выдвинул три гипотезы, включая альтернирующие узлы (при проходе такого узла пересечения чередуются «сверху» и «снизу»), хиральные узлы (они не эквивалентны своему зеркальному отражению) и число закрученности (геометрическая величина, которая описывает зацепления в узлах). Все три гипотезы не так давно были доказаны.

1.9. Что скрывает карта метрополитена?

Математическое понятие: топология

Посмотрите на карту метро любого города в мире. Что вы видите? В отличие от атласов, в которых показывается каждый поворот и изгиб дороги, карта метро выглядит довольно просто. Она состоит из прямых линий, окружностей и кривых. (Для примера откройте карты метро Лондона, Бостона или Вашингтона.) Однако поезда метро редко следуют таким совсем не сложным маршрутам: поезда проезжают целую серию препятствий на пути от одной станции до другой. Но несмотря на такое расхождение, карта метро все равно помогает путешественникам в навигации. Как так получается, что эти карты выбрасывают такое количество информации и все равно остаются полезными?

Ответ скрывается в области математики, которая известна как топология. Топология связана с геометрией и изучает то, как формы меняются, когда их растягивают, сжимают, тянут, перекручивают или искажают. (Слово «топология» от греческого «место», «учение».) Однако изменения, изучаемые топологией, должны подчиняться правилу: изменения не должны нарушать оригинальную целостность фигуры. Например, фигуры, которые были порезаны или приклеены друг к другу, не могут считаться допустимыми предметами для топологического изучения. С другой стороны, создаются новые формы, когда вы до конца натягиваете резинку, скручиваете ее в шар или перекручиваете в форму кренделя – все это допустимо. Вкратце, в топологии вы должны быть способны вернуть новую форму в ее первоначальное состояние за одно непрерывное движение. Если вы можете это сделать, то с точки зрения топологии эти две формы эквивалентны.

Теперь отношение карты метро и настоящего маршрута поездов становится ясным. Карта метро – это топологическая трансформация физического маршрута подземки. В некотором смысле карта показывает версию маршрута поездов, которая была растянута и разглажена, будто она сделана из жвачки для рук. Согласно топологии, две формы – схема метро и маршрут, который в действительности существует в системе общественного транспорта, – идентичны.

Самое большое метро в мире

Шанхайское метро в Китае является самым длинным метро, судя по длине маршрутов, его пути имеют протяженность более 330 миль. Но метро Нью-Йорка имеет самое большое количество остановок в мире – 468 станций.

1.10. Оригами

Математические понятия: геометрия, топология

Оригами – это японское искусство складывания фигурок из бумаги, в Соединенных Штатах оно является времяпрепровождением для детей. Многие из нас видели журавлей, стаканчики и шарики, заполненные воздухом, из бумаги. Но немногие подозревают, что оригами тесно связано с математикой.

Одним захватывающим свойством оригами является умение выйти за рамки традиционной математики, особенно геометрии. Используя лишь сложенную бумажку, человек может поделить угол на три равные части, это задание неподвластно циркулю и линейке в традиционной геометрии. Человек может также использовать оригами, чтобы удвоить куб, это еще одна задача, с которой геометрия справиться не может. (Удвоение куба – это проблема, которой занимались еще в Древнем Египте и Греции. Чтобы удвоить куб, нужно было создать куб, объем которого был бы вдвое больше объема заданного куба. Такую процедуру невозможно закончить, так как сторона большего куба будет равна кубическому корню из 2, а эту длину нельзя построить с помощью циркуля и линейки.)

На самом деле, математическое изучение оригами привело к созданию своих геометрических аксиом, совокупности принципов и определений, похожих на те, что изучал Евклид, известный математик, который жил в Греции более 2000 лет назад. Эти семь принципов известны как правила Фудзиты; они описывают все варианты получения одной новой складки на листе бумаги. Математика в оригами также привела к теореме Кавасаки, которая гласит, что в совокупности углов, которые исходят из одной точки, сумма переменных углов равна 180 градусам.

Сам предмет изучения оригами часто является математическим, помимо того что он становится практически независимой математической областью, которая имеет свои аксиомы и доказательства. Некоторые люди создают трехмерные фигуры из модульных компонентов оригами, которые имеют форму треугольников или пятиугольников. Некоторые люди делают оригами-версию платоновых тел, пяти правильных многогранников (это трехмерные фигуры, у которых все грани являются правильными многоугольниками). Другие же создают гиперболические параболоиды, имеющие форму седла и напоминающие нечто среднее между квадратом и бабочкой. И наконец, некоторые используют оригами, чтобы доказать теорему Пифагора.

В некотором смысле оригами и математика, кажется, делят одну ДНК. И нет ничего лучше, чем создавать что-то своими руками, чтобы лучше понять какое-то математическое понятие. Забудьте о карандашах и графиках, попытайтесь найти математику в складывании листов бумаги!

Праздничное дерево с игрушками-оригами

Каждый год в сотрудничестве с организацией OrigamiUSA Американский музей естественной истории создает Праздничное дерево, украшенное фигурками оригами. На елку вешают примерно 800 фигурок. В 2014 году тема основывалась на фильмах «Ночь в музее», поэтому среди фигурок можно было найти Теодора Рузвельта, Тираннозавра Рекса и статую с острова Пасхи.

1.11. Математика скрывается за запутанными наушниками

Математическое понятие: теория узлов
<< 1 2 3 4 5 >>
На страницу:
2 из 5