Оценить:
 Рейтинг: 0

Data Science для новичков

Год написания книги
2023
<< 1 2 3 4 5 6
На страницу:
6 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

Выше показан график функции распределения. Как его правильно читать? Проведу из произвольной точки на оси x перпендикуляр. Точка пересечения перпендикуляра с графиком даст значение y – вероятность того, что моя произвольная точка примет значение равное или меньшее x. Например, беру оценку 4. Вижу, что вероятность получить такую оценку между 0,5 и 0,6, примерно 55%.

Раз у меня есть непрерывный график функции, я могу посчитать производные. Поэтому случайную величину можно представить и через т. н. плотность распределения (плотность вероятности).

«Плотностью распределения вероятностей непрерывной случайной величины X называют функцию f (x) – первую производную от функции распределения F (x): f (x) = F» (x)» (Гмурман, стр. 116).

Пример такой функции ниже.

Законами распределения называют различные виды плотности распределения. Например, это может быть равномерное, нормальное, показательное распределение. Чаще всего используется нормальное распределение.

Про графики PDF, СDF, PPF подробнее здесь [1.3.6.2. Related Distributions] (https://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm (https://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm))

Гистограмма позволяет сделать предположение о виде распределения данных. Знать вид распределения данных необходимо по нескольким причинам. Во-первых, это позволяет делать предсказания о вероятности того или иного события. Во-вторых, для проведения статистических тестов, определения некоторых метрик требуется распределение определенного вида. Как правило, распределение должно быть нормальным. Если распределение нормальным не является, то данные можно привести к нормальному распределению или можно использовать специальные тесты, метрики. Поэтому важно ответить на вопрос: распределены ли данные нормально? Если нет, то нужно установить вид распределения.

Гистограмма показывает, что средние оценки распределены практически нормально. Интересно, что в интервалах 2.5—3.0 и 4.8—5.0 видны небольшие подъемы линии. При нормальном распределении этого быть не должно. Это означает, что оценки в указанных интервалах имеют вероятность большую, чем это предсказывает нормальное распределение. Дополнительная проверка на нормальность распределения с помощью статистических методов будет показана ниже.

Гистограмму можно построить разными способами. В случае выше ширина столбика показывает частичный интервал, а высота – количество значений в этом интервале. Возможно построить гистограмму, где высота столбика будет показывать плотность. Подробнее см. в официальной документации функции (https://seaborn.pydata.org/generated/seaborn.histplot.html (https://seaborn.pydata.org/generated/seaborn.histplot.html)).

Про интерпретацию гистограммы можно также прочитать в [учебнике для инженеров] (https://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm (https://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm)). Там же можно обнаружить различные типы гистограмм (как нормальную, так и, например, бимодальную), а также дополнительные статистические методы для определения типа распределения в зависимости от типа гистограммы. Гистограмма показывает:

1) центральную характеристику данных;

2) масштаб данных;

3) скошенность;

4) наличие выбросов;

5) наличие нескольких мод в данных.

Трансформация данных к нормальному распределению объясняется в 6.5.2. What to do when data are non-normal (https://www.itl.nist.gov/div898/handbook/pmc/section5/pmc52.htm (https://www.itl.nist.gov/div898/handbook/pmc/section5/pmc52.htm))

Выбросы

В учебнике для инженеров дано следующее определение выбросов:

«Выбросы – это точки данных, которые получены не из того же распределения, из которого получена основная масса данных».

То есть выброс – это такое значение, которое пришло не из того распределения, из которого пришли основные данные. В этом смысл того, чтобы определить распределение для большинства данных, а затем уже выброс. Редкие данные возможны и в границах распределения для основных данных, но вот выброс выходит вообще за границы распределения, то есть например за пределы колокола в нормальном распределении. В этом смысл того, что сначала надо найти отличающиеся от других данные, а затем проверить их на влиятельность.

Вот рекомендации по обработке выбросов из учебника для инженеров:

1. К каждому выбросу необходимо относиться серьезно. Не рекомендуется автоматически удалять выбросы. Наличие выбросов может быть не просто ошибкой в данных, выбросы могут сообщать важную информацию о данных. Поэтому надо постараться объяснить, чем вызваны выбросы в данных.

2. Если гистограмма показывает наличие выбросов, то рекомендуется следующее:

1) применить ящик с усами, который лучше гистограммы показывает наличие и количество выбросов;

2) применить Grubbs’ Test или иные тесты для обнаружения выбросов.

Рекомендуемые тесты на выбросы:

1) Grubbs’ Test – если тест на единичный выброс;

2) Tietjen-Moore Test – в случае, если в данных предполагается более одного выброса. Необходимо заранее знать точное количество выбросов.

3) Generalized Extreme Studentized Deviate (ESD) Test – также, если в данных более одного выброса. Необходимо знать только верхнюю границу ожидаемого числа выбросов. Рекомендуется, когда точное количество выбросов неизвестно.

Как правило, при обнаружении выбросов исходят из того, что данные распределены нормально. Если это не так, то можно привести данные к нормальному распределению.

Это – ящики с усами. Их придумал отец-основатель анализа данных Тьюки. В середине прямоугольников показана медиана. Левый край прямоугольника – это 25%-квартиль, правый край – 75%. Усы – это межквартильный размах. За пределами усов – выбросы.

Интересный вопрос про ящик – это почему он то сжимается, то растягивается. Почему медиана скачет от левой стороны к правой? Ведь это медиана, она должна быть посередине. Все верно, почти. Разберу это на примере.

Важное терминологическое замечание.

«Квантиль 0,5 называют медианой. Для а = 0,25, 0,5 и 0,75 соответствующие квантили называются квартилями, а = 0,2, 0,4, 0,6, 0,8 они называются квинтилями».

Что здесь произошло? Я создал второй вектор, где заменил 7, 8, 9, 10 на 51, 53, 54, 100. Количество значений не изменилось. Не изменилась и сама медиана – она осталась 5.5. Однако линия медианы «прижалась» к левой стороне ящика. Почему?


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2 3 4 5 6
На страницу:
6 из 6