Оценить:
 Рейтинг: 4.5

Котлы тепловых электростанций и защита атмосферы

Год написания книги
2008
<< 1 2 3 4 5 6 7 8 9 10 ... 12 >>
На страницу:
6 из 12
Настройки чтения
Размер шрифта
Высота строк
Поля

Глава 3. Подготовка топлива на ТЭС

3.1. Твердое топливо на ТЭС: доставка в котельный цех и подготовка к сжиганию

3.1.1. Топливное хозяйство угольных ТЭС

Тепловая электростанция на твердом топливе, как правило, имеет угольный склад, на который топливо поступает обычно по железной дороге от места его добычи (рис. 3.1). В редких случаях, при размещении ТЭС непосредственно вблизи шахты или угольного разреза, топливо на ТЭС может подаваться с помощью ленточных конвейеров. Использование для этих целей подвесной канатной дороги или гидротранспорта встречается в России чрезвычайно редко. Для разгрузки угольных вагонов на современных электростанциях используют вагоноопрокидыватели производительностью более тысячи тонн угля в час.

Объем топливного склада зависит от надежности и регулярности поставок угля на ТЭС, а также от мощности ТЭС, точнее – от максимального расхода топлива. Для разгрузочных работ и перемещения угля на тракт топливоподачи топливные склады оборудуют необходимыми механизмами: штабелеукладчиками, кранами-перегружателями с мостовыми грейферными кранами, бульдозерами, скреперными установками.

Условия хранения топлива на складах определяются характеристиками угля: некоторые марки углей с высоким выходом летучих, например, склонны к самовозгоранию. Для предупреждения этого явления используют уплотнение топливных штабелей с помощью бульдозеров. В некоторых случаях гладкоукатанные откосы штабеля покрывают специальным лаком, а его поверхность – отработавшим маслом. При складировании сухих углей приходится принимать меры для ограничения их пыления. Известны случаи, когда вокруг топливного склада высаживали защитную лесополосу.

Для подачи угля со склада или непосредственно с места разгрузки в бункеры котельного цеха используют обычно конвейеры с резиновыми лентами. По пути к этим бункерам уголь проходит через дробильное помещение, так как мельницы, установленные в котельном цехе, не приспособлены к измельчению крупных кусков топлива. При одноступенчатом дроблении максимальный размер поступившего на ТЭС угля с 200–250 мм уменьшается до 15–60 мм. Если на ТЭС поступает уголь с кусками размера «плита» (до 800–1000 мм), то приходится устанавливать оборудование для двухступенчатого дробления топлива. Для некоторых видов твердого топлива (антрацитовый штыб, торф, отсевы каменных углей) дробилки на тракте топливоподачи вообще не требуются.

Рис. 3.1. Технологическая схема паротурбинной электростанции на минеральном топливе: 1 – вагоноопрокидыватель; 2 – приемный бункер; 3 – узел пересыпки; 4 – угольный склад; 5 – дробильное отделение; 6 – бункер сырого угля котельной; 7 – мельница; 8 – воздухоподогреватель; 9 – дутьевой вентилятор; 10 – цистерна с мазутом; 11 – обогреваемый межрельсовый лоток; 12 – приемный резервуар; 13 – насос; 14 – основной резервуар; 15 – насос первого подъема; 16 – паровые подогреватели; 17 – насосы второго подъема; 18 – газорегулировочный пункт; 19 – котёл; 20 – электрофильтр; 21 – каналы гидрозолоудаления; 22 – багерный насос; 23 – дымосос; 24 – дымовая труба; 25 – паропровод свежего пара

Для того чтобы не перегружать дробилки углем, который не содержит крупных кусков, перед дроблением устанавливают грохоты. Это снижает расход электроэнергии на дробление и уменьшает вероятность замазывания дробилок наиболее мелкими (а значит – более влажными) частицами топлива.

Подготовленная на тракте топливоподачи дробленка поступает в бункер сырого угля (БСУ), расположенный непосредственно в котельном цехе. Обычно БСУ выполняют бетонными с железненными поверхностями или металлическими, с гладкой внутренней поверхностью (для обеспечения полного их опорожнения при срабатывании топлива).

При работе ТЭС на влажных углях, обладающих низкими сыпучими свойствами, бункер выполняется с крутонаклонными, а иногда даже с вертикальными стенками. Вторым средством для устранения сводообразования и зависания влажного топлива в бункерах является увеличение выходного отверстия. Причем увеличение размеров только по направлению движения питателя сырого угля не дает желаемого эффекта. Поэтому для особо влажных бурых углей иногда применяют специальные комбинированные питатели сырого угля.

При использовании менее влажных каменных углей проблемы схода топлива из бункера возникают реже, но и для них требуется, чтобы угол наклона стенок бункера был не менее 60°, а сечение выходных горловин – не менее 700x700 мм.

Питатели сырого угля не только подают твердое топливо из бункера в размольное устройство, но и регулируют подачу топлива. Конструкции питателей сырого угля (ПСУ) могут быть самыми разными, но наибольшее распространение получили ленточные и скребковые ПСУ. Подача топлива на ленточных питателях регулируется положением плоского шибера, изменяющего высоту слоя топлива на ленте, или изменением скорости движения самой ленты. Достоинством ленточных ПСУ является возможность подачи топлива от бункера к мельнице на значительное расстояние.

Скребковые питатели устроены по-другому: у них слой топлива перемещается вдоль гладкого неподвижного стола при помощи множества последовательно установленных и шарнирно соединенных между собой скребков. Подача топлива, как и в случае ленточных питателей, регулируется шиберами, влияющими на толщину слоя, или плавным изменением скорости движения скребков.

От питателей сырого угля к мельницам топливо поступает по течкам, которые также могут создать трудности для бесперебойной подачи топлива в котел. Во избежание застревания в них топлива, течки должны иметь достаточно большой диаметр (от 250 мм при расходе топлива 5 т/ч до 800 мм при расходе 180 т/ч) и располагаться вертикально или под определенным углом к горизонту (не менее 60° для влажного топлива или 50° – для сухого, при условии обогрева течек).

На современных котлах молотковые и среднеходные мельницы (см. ниже) работают под давлением. В таких случаях на течках рекомендуется последовательно устанавливать две мигалки с принудительным открытием.

После течки дробленый уголь попадает в мельницу (впрочем, в некоторых случаях, при работе на высоковлажных углях, мельнице предшествует подсушивающее устройство, в котором за счет теплоты газа или газо-воздушной смеси испаряется часть влаги топлива). Но прежде чем будет дано описание различных типов мельниц, нужно познакомиться с основными характеристиками угольной пыли.

3.1.2. Основные характеристики угольной пыли

Физические свойства угольной пыли значительно отличаются от свойств исходного угля. Смесь угольной пыли с воздухом обладает высокой подвижностью и может легко перемещаться по трубопроводам на значительные расстояния. Угол естественного откоса угольной пыли равен 30–40°. Из-за пористой структуры пылинок насыщенная воздухом угольная пыль имеет насыпную плотность всего лишь 0,5 т/м

. Но со временем пыль слеживается, уплотняется, в результате чего её насыпной вес увеличивается. В нижней части пылевых бункеров насыпной удельный вес пыли может достигать 0,8–0,9 т/м

.

Полученная в результате размола угольная пыль состоит из отдельных пылинок разной величины. Размер самых мелких пылинок близок к нулю, а самых крупных – может быть различным. При сжигании бурых углей с высоким выходом летучих допускается, чтобы самые крупные частицы имели размер до 1000–1500 мкм. С другой стороны, при сжигании антрацита или тощих углей (с малым выходом летучих) максимальный размер угольных частиц не должен превышать 200–250 мкм.

Для оценки тонкости пыли в России используют такое понятие, как остаток на сите определенного размера (90, 200 и 1000 мкм), выраженный в %%. За рубежом обычно крупность пыли оценивается по проходу через сито с определенным числом отверстий на 1 дюйм (mesh). Сравнение отечественных и зарубежных характеристик тонкости угольной пыли приведено в табл. 3.1 (#tab_3_1).

Следовательно, если в статье или в технической документации из США приведена характеристика угольной пыли (например, mesh 170 = 75 %), то это значит, что остаток на сите с размером ячейки 88 мкм (то есть почти что R

) равен 25 %.

Представление о фракционном составе угольной пыли дает зерновая характеристика, которую легко получить, зная остаток на нескольких ситах. На рис. 3.2 приведена зерновая характеристика одного из видов каменного угля. Уравнение зерновой характеристики имеет вид:

, (3.1)

где R

– полный остаток на сите с размером ячеек сита х, мкм; b – коэффициент тонкости измельчения, постоянный для определенного топлива и метода измельчения; n – коэффициент полидисперсности пыли, зависящий от типа мельничного устройства. Коэффициенты b и n определяются опытным путем.

Рис. 3.2. Зерновая характеристика пыли

Важнейшим параметром твердого топлива при его размоле является коэффициент размолоспособности К

. Этот коэффициент является отношением расхода электроэнергии при размоле угля, принятого за эталон, к расходу электроэнергии при размоле данного угля. Конечно, размол сравниваемых топлив производится от одинаковой крупности до одной и той же тонкости помола. В России в качестве эталонного топлива принят достаточно твердый уголь типа антрацит, поэтому практически все угли имеют К

больше 1,0.

Таблица 3.1. Сита для рассевки угольной пыли по американскому стандарту ASTM

Зарубежные специалисты для оценки размолоспособности углей обычно используют коэффициент Хардгроу. Соотношение между этим показателем и К

приведено на рис. 3.3.

Рис. 3.3. Связь между К

по шкалам ВТИ, ЦКТИ, Хардгроу и горного бюро США

Изменение тонкости пыли значительно влияет на производительность мельниц, а также на удельный расход электроэнергии, затраченной на размол. Если руководствоваться только этими двумя характеристиками, то следовало бы всегда работать с грубым помолом. Однако нельзя забывать, что угольная пыль нужна для организации топочного процесса, а фракционный состав этой пыли влияет на устойчивость воспламенения, экономичность сжигания, шлакование и загрязнение поверхностей нагрева, а также на степень образования токсичных оксидов азота NO

. Поэтому при эксплуатации угольных котлов всегда приходится настраивать пылесистемы таким образом, чтобы устранить неизбежные при работе на грубой пыли недостатки: затягивание процесса воспламенения, повышение температуры на выходе из топки, увеличение потерь с механическим недожогом и т. д. Обычно оптимальную величину R

определяют по минимальному значению суммы затрат на размол топлива в мельнице и стоимости потерь от механического недожога (рис. 3.4). Следовательно, для углей с малым выходом летучих, когда содержание горючих в уносе достигает 10–20 %, остаток на сите 90 мкм целесообразно поддерживать на более низком уровне, чем при работе на высокореакционных углях, механический недожог которых редко превышает 1 %.

Рис. 3.4. Определение оптимальной тонкости пыли

3.1.3. Пылесистемы и углеразмольные мельницы

Для размола топлива можно использовать центральные или индивидуальные системы пылеприготовления. В первом случае вблизи главного корпуса электростанции сооружается центральный пылезавод (ЦПЗ), на котором организованы сушка и размол топлива для всех котлов ТЭС. Готовая угольная пыль специальным насосом подается в пылевые бункеры каждого котла, а из них – к горелкам котельных установок. Достоинством ЦПЗ является независимость работы котлов от нагрузки систем пылеприготовления, которые могут работать в оптимальном режиме, снижая тем самым расход электроэнергии на собственные нужды. Кроме того, при наличии ЦПЗ легче организовать размыкание схемы сушки (то есть сброс очищенного сушильного агента в атмосферу), что повышает эффективность котельных установок.

Вместе с тем, сооружение ЦПЗ требует значительных капитальных затрат, а эксплуатационные расходы часто превышают достигнутый экономический эффект даже при использовании высоковлажных топлив: для сушки топлива на ЦПЗ обычно используется пар из отборов паровой турбины. В России практически единственным объектом с работающим ЦПЗ является II очередь Назаровской ГРЭС (два котла П-49, обеспечивающие паром блок мощностью 500 МВт).

Индивидуальные системы пылеприготовления располагают в главном корпусе ТЭС, рядом с котлами, для которых размалывается уголь. Для сушки топлива в них используются горячий воздух или смесь воздуха с дымовыми газами из этого же котла. Различают индивидуальные системы пылеприготовления с прямым вдуванием и с промежуточным бункером.

Первый, наиболее простой вариант предполагает, что сушильный агент (воздух или газовоздушная смесь, а также выделившиеся из угля водяные пары) транспортирует угольную пыль к горелкам (рис. 3.5). Второй вариант более сложен: он предполагает наличие циклона, в котором угольная пыль после мельницы почти полностью отделяется от сушильного агента (рис. 3.6). После этого уловленная в циклоне угольная пыль поступает в пылевой бункер, из которого она пылепитателями с регулируемым числом оборотов подается к горелкам. Причем возможны разные варианты: на этом участке транспортирующим агентом может быть горячий воздух (в данном случае сушильный агент с тонкими фракциями угля, не уловленными в циклоне, обычно подается в топку через так называемые «сбросные» горелки); или же для транспорта пыли к горелкам используется тот же самый сушильный агент, отсасываемый из циклона мельничным вентилятором (в этом случае не требуется оборудовать котел сбросными горелками).

Рис. 3.5. Индивидуальная система пылеприготовления с прямым вдуванием для молотковых мельниц: 1 – бункер сырого угля; 2 – отсекающий шибер; 3 – питатель угля; 4 – мигалка; 5 – течка сырого угля; 6 – мельница; 7 – сепаратор; 8 – распределитель пыли; 9 – взрывной клапан; 10 – короб вторичного воздуха; 11 – дутьевой вентилятор; 12 – воздухоподогреватель; 13 – пылепровод; 14 – горелка; 15 – котел; 16 – трубопровод аварийной присадки воздуха; 17 – шибер с быстрозакрывающимся устройством; 18 – клапан присадки холодного воздуха; 19 – воздухопровод горячего воздуха; 20 – трубопровод холодного воздуха для уплотнения вала мельницы; 21 – устройство для измерения расхода сушильного агента

В последние годы некоторое распространение в России получил 3-й вариант: подача пыли к горелкам с высокой концентрацией — ППВК. Этот метод заключается в том, что пылесистема оборудуется высоконапорными воздуходувками для транспорта пыли по трубопроводам малого диаметра (обычно – 76 мм) при концентрации угольных частиц 30–40 кг на кг воздуха (при традиционном методе концентрация твердых частиц близка 0,5 кг/кг, а диаметр пылепровода, в зависимости от мощности горелки, составляет 300–800 м).

Рис. 3.6. Индивидуальная система пылеприготовления с ШБМ и с промежуточным бункером: 1 – бункер сырого угля; 2 – отсекающий шибер; 3 – автоматические весы; 4 – весовой бункер; 5 – питатель угля; 6 – течка сырого угля; 7 – устройство для нисходящей сушки; 8 – мельница; 9 – клапан присадки холодного воздуха; 10 – устройство для измерения расхода сушильного агента; 11 – мигалка; 12 – сепаратор; 13 – течка возврата крупной пыли; 14 – циклон; 15 – перекидной шибер; 16 – реверсивный шнек; 17 – бункер пыли; 18 – питатель пыли; 19 – трубопровод рециркуляции; 20 – мельничный вентилятор; 21 – короб первичного воздуха; 22 – смеситель; 23 – горелка; 24 – взрывной клапан; 25 – трубопровод сушильного агента; 26 – атмосферный клапан; 27 – воздухопровод; 28 – газопровод; 29 – смесительная камера; 30 – короб вторичного воздуха; 31 – дутьевой вентилятор; 32 – воздухоподогреватель; 33 – заглушка; 34 – сбросная горелка; 35 – котел
<< 1 2 3 4 5 6 7 8 9 10 ... 12 >>
На страницу:
6 из 12