Оценить:
 Рейтинг: 0

Старение как побочный эффект эволюции

Год написания книги
2016
<< 1 2 3 4 5 6 ... 9 >>
На страницу:
2 из 9
Настройки чтения
Размер шрифта
Высота строк
Поля

Биологическое наследие, получаемое от нас детьми, включает в себя нечто большее, чем просто нуклеотидные последовательности родительских генов. Они получают от нас и так называемую эпигенетическую информацию, влияние которой распространяется не только на первое поколение, но и на внуков и даже правнуков. Подобно ДНК, эпигенетическая информация хранится в хромосомах. В частности, она существует в виде небольших молекул, которые присоединяются к ДНК и хромосомным белкам. Однако эпигенетическая информация чётко обособлена от самой ДНК, изменяется в ответ на сигналы из окружающей среды и участвует в регуляции клеточных функций (Скиннер М., 2015).

Воздействие внешних факторов на животных и растения (например, контакт с некоторыми загрязняющими веществами или стресс различной природы) может повлиять на состояние здоровья потомства без каких-либо изменений в ДНК. Эффект от подобных воздействий может сохраняться на протяжении ряда поколений вследствие специфических процессов, протекающих в репродуктивных клетках (сперматозоидах, яйцеклетках и их клетках-предшественниках). Так называемое эпигенетическое наследие может затягивать и более далёких потомков через изменение расположения специфических маркеров, связанных с ДНК.

В 1990-х гг. исследователи выявили множество эпигенетических маркеров, которые могут легко включать и выключать целые серии последовательно расположенных генов, независимо от информации, заключённой в ДНК. В поле зрения учёных попали также особые РНК, называемые некодирующими. На них ничего не синтезируется, но они могут взаимодействовать с эпигенетическими маркерами, находящимися на ДНК и гистонах. Процесс взаимодействия между геномом и эпигеномом крайне изменчив и до сих пор во многом остаётся загадочным.

Малейшие изменения эпигенетической информации влияют на активацию тех или иных генов в клетках, находящихся в различных частях организма. Вредные химические вещества, недостаточное или несбалансированное питание и другие стрессовые воздействия (изменение климата, патогенные микроорганизмы) могут спровоцировать присоединение или удаление эпигенетических маркеров, что, в свою очередь, повлияет на активность генов, а значит, и на работу тканей и органов. Эпигеном может полностью выключать некоторые участки генома. Например, существует множество генов, кодирующих обонятельную систему, в которых мы не нуждаемся. Поэтому они «выключены» эпигеномом посредством химической модификации ДНК. А значит, наиболее важной ролью эпигенетических маркеров (если не самой целью их существования) может оказаться резкое увеличение изменчивости особей в популяциях различных организмов.

В исследовании Манела Эстеле из Барселонского университета (Каталония) показано, что существование взаимовлияния между генетическим и эпигенетическим вариантами модификации у человека, позволяет добиться тонкой настройки для идеального соответствия разным средам обитания (Бёрч Х., 2013). А поскольку эпигенетические изменения происходят в тысячу раз чаще, чем генетические, то эпигенетический уровень управления позволяет человеку адаптироваться гораздо быстрее. Люди могли использовать этот режим мгновенной адаптации для быстрого изменения пигментации кожи, а также для защиты от таких заболеваний, как корь и гепатит В. «Если организму человека или животного требуется быстрое изменение, дающее преимущество в выживании, то, скорее всего, сначала произойдет эпигенетическая модификация, – утверждает Манел. – В нашем исследовании также показано, что существует взаимовлияние между генетическим и эпигенетическим вариантами модификации у человека, что позволяет добиться тонкой настройки для идеального соответствия разным средам обитания».

Таким образом, человеческое тело модифицируется в зависимости от состояния среды при наличии эпигенетического уровня управления. То есть известное изречение «среда формирует человека» соответствует действительности.

1.3. Регулирующая часть генома значительно превышает кодирующую. Любопытно, что эти две части, по всей видимости, по-разному эволюционируют

В начале прошлого десятилетия, когда в рамках международного проекта Human Genome Project впервые была получена полная последовательность нуклеотидов, составляющих человеческую ДНК. Геном был прочитан, и оказалось, что лишь ничтожные его проценты заняты генами, то есть последовательностями, кодирующими белковые продукты. Тут же встала задача разобраться, для чего нужны остальные девяносто с лишним процентов. Специалистам стало очевидно, что геном должен содержать регуляторные области, управляющие активностью генов. Такие элементы генома предопределяют, при каких условиях и в каком количестве будет производиться тот или иной белок (Тулинов Д., 2012).

В сентябре 2012 г. международный консорциум ENCODE (в него входит 32 лаборатории из нескольких стран) опубликовал данные о функциональных элементах генома человека. Учёные выявили и проанализировали те области, которые взаимодействуют с белками, либо влияют на упаковку молекулы в хроматине, либо служат матрицей для РНК. Суммарная величина таких участков составила 80% ДНК.

Стало понятно, что регулирующая часть генома значительно превышает кодирующую. Согласно ENCODE, только сайты связывания факторов транскрипции занимают минимум 8% генома – это неожиданно много. Любопытно, что эти две части, по всей видимости, по-разному эволюционируют. В целом гены стабильнее, нежели регуляторные элементы, которые варьируют от вида к виду в гораздо большей степени.

Проект ENCODE показал, что картина генетических взаимодействий куда более сложна и запутанна. Геном представлялся раньше как отдельные островки-оазисы, раскиданные по близлежайшей пустыне. Теперь его можно представить в виде хитросплетённой сети или, если придерживаться географических образов, непролазных джунглей. Четыре пятых генома биохимически активно, а влияние его частей друг на друга весьма разнообразно. Многое указывает на то, что именно в регуляции содержится ключ ко многим индивидуальным особенностям человека.

В первую очередь результаты исследования механизмов регуляции генов важны для медицины. Так, в рамках работы ENCODE было установлено, что большинство однонуклеотидных полиморфизмов (различий между людьми в одну букву генома), связанных с той или иной болезнью, находится не в генах, а внутри функциональных элементов либо поблизости от них.

Интересно заметить, что, по мнению исследователей, причиной прогерии (синдрома Хэтчинсона-Гифорда) – преждевременной старости (от греческого «pro» – раньше, «gentosos» – старец), которая является редким генетическим заболеваниям, ускоряющим процесс старения примерно в 8-10 раз, является одиночная, точечная мутация гена LMNA. В молекуле ДНК изменен всего лишь один нуклеотид! Некоторые исследователи даже утверждают, что это не наследственное заболевание, что оно возникает у каждого больного заново (Добрина Н.А., 2009).

В мире всего 80 человек, страдающих прогерией. Например, местной «достопримечательностью» казахского аула Мукур 20-летний Нуржан. Морщинистый старичок и вправду не так давно отметил совершеннолетие.

Малышом Нуржан любил играть в поле среди фрагментов ракет «земля-воздух», которые испытывали на полигоне неподалёку. Родные думают, что это и погубило ребёнка (Сулейменова Л., 2012). «Первые морщины я увидела, когда сыну исполнилось 4 года. Так страшно было! Вздыхает его мама Базаргуль. – В 6 лет он уже был похож на старика! Мы ходили к знахарям, ездили на лечение в Германию. Исцелить сына не смог никто…».

Создаётся впечатление, что причину этого ненаследственного заболевания следует искать не в генах, а внутри функциональных элементов либо поблизости от них.

Как показывают данные ENCODE, разные типы клеток содержат отличающиеся наборы некодирующих РНК. Это может указывать на наличие некоей связанной с ними биологической функции.

В 2003 году международная группа учёных объявила, что человеческий геном расшифрован. Стало понятно, какой ген за что отвечает. Исследователи пришли к тому, что все животные имеют огромную часть древних «спящих» генов и лишь незначительную долю работающих. У человека, к примеру, эта доля составляет всего 8,2% (Кудрявцева Е., 2014). Вся остальная часть ДНК – около 95 %, по мнению некоторых учёных, – это эволюционный или генетический «мусор». «Мусорная ДНК» – это, по сути, гигантский эволюционный шлейф, который тянется за человеком миллионы лет эволюции и бережно хранится в кладовых его клеток. По одной из версий, «мусорная ДНК» вообще двигатель эволюции: учёные посчитали, что если бы эволюция шла постепенно за счёт мутаций в функциональной части ДНК, человек так бы и не возник до сих пор – не хватило бы времени. Но эволюция шла рывками, которые выводили виды на новые витки развития. По мнению учёных, происходило это именно благодаря «мусорной ДНК», вернее её особой части, которую окрестили «прыгучим геномом». Так называют небольшие кусочки генома, которые ведут себя по типу вирусов – могут вырезать себя из одного места хромосомы и переставлять в другое. Эти кусочки генома, как явствует из предыдущего раздела, получили название транспозонов.

Интересна точка зрения на «мусорную ДНК» российского биолога П.П. Гаряева, опирающегося на разработки советского учёного Александра Гурвича, который в 20-х годах прошлого века ввёл в науку понятие «биополе». Идеи Гаряева пользуются определённой популярностью у западных учёных, в частности в Канаде и Германии (Фролов Я., 2013).

Этот учёный является создателем волновой генетики. Изучив «мусорную ДНК» с помощью оригинального лазерного оборудования и поставив ряд шокирующих экспериментов, учёный пришёл к выводу, что ДНК излучает электромагнитные волны, а также свет (см. фото 6) и звук, которые учёному удалось записать.

Чем сложнее организм, тем более замысловата эта светомузыка. Причём мелодия здорового человеческого генома оказывает на окружающих благотворное воздействие – бодрит, молодит и лечит. Но главное, «мусорная» часть ДНК не только сама испускает волны, но и принимает жизненно важный сигнал извне. Это доказывает следующий эксперимент.

Исследователи взяли два образца лягушачьей икры, из которой должны были вылупиться головастики. Один образец изолировали в специальной камере, искажающей электромагнитные волны. В остальном условия были совершенно одинаковые. Из икринок в камере вылупились жуткие монстры с множеством мутаций, а во второй группе головастики были здоровы. В результате был сделан вывод о том, что информации, заложенной в генах, недостаточно, чтобы построить «правильный» организм. Необходим сигнал извне. Он и запускает программу развития, заложенную в «мусорной» части ДНК. Откуда приходит этот сигнал? На этот вопрос науке ещё предстоит ответить.

Группа Гаряева решила выяснить, может ли их открытие иметь практическое значение. Например, способно ли излучение здоровой ДНК повлиять на больной организм? Для этого была создана пилотная модель биокомпьютера, передававшего волновое излучение при помощи лазера и широкополосного радиополя. Исследователи ввели 40 крысам ядовитое вещество аллоксан, которое полностью разрушило функции поджелудочной железы, затем взяли ДНК здорового крысёнка и передали её волны через биокомпьютер больным животным. И через 10 дней все крысы выздоровели. Поджелудочная полностью регенерировала.

Одним из самых удивительных опытов учёных стала попытка повторить непорочное зачатие. Из неоплодотворённой икринки лягушки они удалили все части ДНК, содержащие наследственную информацию. Затем «облучили» оставшийся кусочек ткани волнами ДНК уже вполне оформившегося головастика. И пустая икринка начала развиваться – появились мышцы, нервы, кровь! У учёных возник соблазн повторить этот эксперимент на людях – облучить женские яйцеклетки волнами ДНК спермы, и проверить, произойдёт ли зачатие? Но найти женщину, желающую поучаствовать в эксперименте, не удалось.

В ходе исследований группа Гаряева пришла к выводу, что код, зашифрованный в «мусорной части» нашей ДНК, можно сравнить с буквами неизвестного алфавита. И если его расшифровать и составить правильные звуковые алгоритмы, с их помощью можно будет влиять на организм. Иначе говоря, лечить болезни и продлевать молодость словом. Ведь если ДНК действительно воспринимает звуковые волны и реагирует на них, вполне вероятно, что дело в особых сочетаниях звуков, влияющих на организм на клеточном уровне. Это подтверждают и лингвинистические исследования, выявившие, что в основе лечебных заговоров у разноязыких народов используется очень похожий набор звуков. Изучением этих особенностей занимается научное направление «лингвистическая генетика».

Группа Гаряева провела эксперименты, в ходе которых учёные пытались влиять на рост пшеницы и ячменя с помощью человеческой речи. В первом случае были использованы бессмысленные речевые псевдокоды, которые никак не повлияли на растения. А вот специально разработанные вербально-волновые алгоритмы дали резкое ускорение роста.

П.П. Гаряев утверждает, что человеческое тело имеет «голографический каркас», или «витальную ауру». Эта аура является некоей матрицей регенерации и в случае утери конечности или органа позволяет восстановить целостность организма. Но только при определенных условиях и психофизической подготовке (Боков М., 2012).

То что «мусорная» часть ДНК действительно воспринимает звуковые волны и реагирует на них, то, что разного рода болезни, в том числе онкологию, можно лечить с помощью сигналов исходящих не только извне, но и с помощью мыслей и слов самого больного, доказывают следующие эксперименты.

Так, горный инженер Александр Сусло из Горловки исцелился от рака прямой кишки третье стадии колокольным звоном («Жизнь» № 17, 2009). Про целебные свойства колоколов Саша узнал из книги «Лечение колокольным звоном» Елены Задубовской. Из-за слабости он не мог ходить в храм и звонил у себя дома маленьким пятисантиметровым колокольчиком и при этом ругал опухоль. «Ведь она живая, она слышит и чувствует моё неприятие, ненавидит колокольный звон, – утверждает Саша. – При этом я представлял уже умирающую, исчезающую опухоль. Через две недели моя опухоль из шестисантиметрового твёрдого шарика превратилась в ничто, она была мертва и вышла полностью». Но при этом по утверждению питерского врача Андрея Гнездилова надо очень тонко подобрать тональность и ритм звона.

Заслуживает внимания ещё один удивительный факт, ставший сверхновой сенсацией в отечественной медицине: 62-летняя пенсионерка из Новосибирска Зинаида Дегтярёва силой собственной мысли смогла вырастить себе орган, удалённый хирургическим путём! (Щербакова О. и др., 2010).

Этот невероятный факт подтверждают и ошеломлённые случившимся врачи, и исследования УЗИ! Диагноз «желчекаменная болезнь» экономисту Дегтярёвой поставили в 1998 году. Вскоре ей провели операцию по удалению желчного пузыря. Спустя девять лет Зинаида Александровна решила восстановить целостность своего организма, и за год ей удалось это сделать. «Самое главное – вера. При её наличии сотворить чудо может каждый, – рассуждает сибирячка. – В нашей ДНК заложена программа всех органов. У всех есть желчный пузырь, и эта информация остаётся в организме даже после его удаления. Поэтому я мысленно брала из ДНК эту информацию, представляла её в неком подобии голограммы и посылала импульс в нужное место. Проще говоря, всё время транслировала мысль: «У меня он есть». Когда Зинаида Александровна решила проверить результат своих усилий на УЗИ, его заключение женщину порадовало, но не удивило. Зато врач, проводивший диагностику, наотрез отказался верить в то, что перед ним женщина, пережившая операцию. На экране монитора доктор видел совершенно здоровый орган. «За сорок лет работы ни в моей, ни в чьей-то другой практике я не встречал ничего подобного. После удаления желчный пузырь не имеет свойства восстанавливаться, даже частично. Такое просто невозможно! Это нереально! – изумляется Вячеслав Карпов, заведующий 1-м хирургическим отделением городской больницы № 3 г. Новосибирска.

Случай с Зинаидой Дегтярёвой убедительно доказывает нам, что человек сам может себя избавлять от разного рода болезней, в том числе онкологических. И это излечение зависит не только от силы слова, то есть звуковых волн, но и от имеющегося у человека «голографического каркаса», то есть матрици регенерации, которая в случае утери конечности или органа позволяет восстановить целостность организма путём волнового воздействия на геном.

«Биология веры» – одна из важнейших вех Новой Науки. Исследовав процессы информационного обмена в клетках человеческого тела, учёные пришли к выводам, которые должны радикально изменить наше понимание Жизни. Со школьной скамьи нам известно, что всей нашей биологией управляют программы, заложенные в молекуле ДНК. Но оказывается, сама ДНК управляется сигналами, поступающими в клетки извне. И этими сигналами могут быть, в том числе, наши мысли – как позитивные, так и негативные. Итак, человек в принципе может изменять своё тело, контролируя своё мышление. Это открытие возвещает новую эпоху в истории медицины – и, скорее всего, новую ступень в эволюции человека.

1.4. Практически любые внешние воздействия, будь то химическое или какое-либо другое, вызывают эпигенетические мутации в клетках, которые передаются новым поколениям

Практически любые внешние воздействия, будь то химическое или какое-либо другое, вызывают эпигенетические мутации в клетках, дающих начало гаметам (сперматозоидам и яйцеклеткам), и имеют тенденцию фиксироваться и в дальнейшем передаваться новым поколениям. Причём воздействие внешних факторов на животных и растения (например, контакт с некоторыми загрязняющими веществами или стресс различной природы) может повлиять на состояние здоровья потомства без каких-либо изменений в ДНК. Эффект от подобных воздействий может сохраняться на протяжении ряда поколений вследствие специфических процессов, протекающих в репродуктивных клетках (сперматозоидах, яйцеклетках и их клетках-предшественниках).

Это утверждение учёных подтверждает эксперимент на крысах. Внешнее воздействие вызывало у крыс эпимутацию, нарушающюю правильное развитие гонад у эмбрионов мужского пола. Она передаётся из поколения в поколение от сперматозоидов клеткам эмбриона, в том числе примордиальным зародышевым клеткам. Даже сам крошечный эмбрион уже содержит примордиальные зародышевые клетки, которые дают начало и яйцеклеткам и сперматозоидам.

Наследование приобретённых признаков последующим поколениям было экспериментально подтверждено на широком спектре видов, включая растения, мух, червей, рыб, грызунов и свиней.

Причём эксперименты, проведённые Дженнифер Уолстенхолм (Jennifer Wolstenholme) и её коллегами из Медицинской школы Виргинского университета, показывают, что устойчивый эпигенетический эффект наблюдается у животных даже при дозах, сопоставимых с теми, с которыми человек порой сталкивается в повседневной жизни. При этом даже в отдалённых поколениях самцов проявляются всё те же характерные признаки пониженной фертильности, что и у первого поколения.

Согласно эпигенетике существует немало внешних факторов, которые заставляют одни гены трудиться активнее, а другие впадать в спячку. Вредные химические вещества, недостаточное или несбалансированное питание и другие стрессовые воздействия, в частности климатические изменения, могут спровоцировать присоединение или удаление эпигенетических маркеров, что, в свою очередь, повлияет на активность генов, а значит, и на работу тканей и органов.

Приведём несколько примеров, доказывающих, это утверждение.

– Федерике Перера – директору Центра по изучению влияния окружающей среды на здоровье детей при Колумбийском университете, удалось обнаружить, что у людей, подвергавшихся воздействию загрязненного воздуха, был более высокий уровень аддуктов ПАУ-ДНК в крови, в результате которого, возможно, нарушалось поступление питательных веществ и кислорода к плоду, связываясь с рецепторами в плаценте. Кроме того, возможно, происходило выделение ферментов, влияющих на метаболизм, или ростовые гормоны, и что этот высокий уровень, в свою очередь, коррелировал с присутствием генетических мутаций, которые считаются фактором риска возникновения рака и нарушений развития у маленьких детей. В результате новорожденные имели меньшие размеры тела и подвергались повышенному риску возникновения нарушений развития. По словам Переры, уже имеются некоторые данные, показывающие, что ПАУ могут вести к эпигенетическим изменениям в активности генов, которые нельзя выявить, занимаясь поиском нарушений в самом генетическом коде. Например, воздействие ПАУ может усиливать метилирование ДНК, при котором метильные группы (СН

) присоединяются к ДНК. Метилирование заглушает гены и может выключать те из них, которые нужны для борьбы против ряда заболеваний, в том числе онкологических (Фейгин Д., 2008).

– В конце декабря 2010 г. в известном американском научном медицинском журнале «Педиатрия» (Pediatrics) были опубликованы шокирующие результаты исследования, проведенного в российском городе Чапаевске. Из-за химпредприятий там очень высок уровень загрязнения диоксинами и другими опасными химикатами. Большая международная группа ученых, среди которых были и наши соотечественники, наблюдала, как развиваются 499 мальчиков с 8 до 11 лет. Те, у кого «химии» в организме было больше, тем медленнее они набирали рост и вес.

– Из-за смога и соракаградусной жары в летние месяцы 2010 года у россиян резко снизилась способность к зачатию, и ухудшилось качество спермы (Свешникова Е., 2010). А всё из-за того, что клетки, из которых образуются сперматозоиды, так называемые клетки сперматогенеза (или примордиальные зародышевые клетки), очень ранимы и чувствительны ко всяким вредным химическим веществам. Из-за вдыхания смога, то есть взвеси частиц горения, хлорорганических соединений, в организме повышается продукция так называемых активных форм кислорода – свободных радикалов, оказывающих токсический эффект на яичко. То же происходит и при вдыхании лакокрасочных веществ, растворителей. Замечено также, что в тех странах, где существуют значительные перепады температур между летом и зимой, осенью и зимой сперма хуже по своим показателям (где-то на 30%).

– Японцы, которые чаще других народностей болеют раком желудка, эмигрировав в Америку, в первом поколении продолжают болеть этим недугом с той же частотой, что и на родине, но уже во втором поколении заболеваемость у них становится такой же, как у американцев. По мнению директора Российского онкологического научного центра им. Блохина, академика РАН и РАМН Михаила Давыдова: «Видимо действуют не генетические, а внешние факторы: питание, экология… То же самое можно сказать о так называемом «семейном» раке: в редких случаях виновата генетика, но чаще всего – одни и те же вредные факторы, которые воздействуют на живущих вместе людей.

Брайан Тернер из Бирмингемского университета (Англия) считает, что человек может иметь генетическую предрасположенность к какому-то заболеванию, например, раку, но возникнет оно или нет, зависит от средовых факторов, действующих через эпигенетический канал (Болл Ф., 2011).

Согласно последним данным, внешние воздействия влияют на психику через эпигенетическое маркирование хромосом. Присоединение или отщепление от ДНК и гистонов определённых химических групп приводит к изменению активности генов, при этом заключённая в них информация сохраняется (Нестлер Э., 2012). Опыты на мышах продемонстрировали роль «долгоживущих» эпигенетических изменений в развитии таких патологических состояний, как наркозависимость и депрессия. Эпигенетические изменения могут оказывать влияние и на поведение самок грызунов по отношению к своим детёнышам, при том что особенности поведения передаются потомкам без какого-либо участия клеток зародышевой линии. Многие новые представления о природе психических заболеваний сформировались исходя из результатов исследований эпигенетических изменений наследственного материала, не имеющих ничего общего с мутациями. Однако, и те, и другие могут сказываться на работе головного мозга и иных органов.

Уже давно считается, что среди причин развития болезни Альцгеймера и некоторых видов рака есть средовые компоненты, но никто не может утверждать, что все они выявлены (Фридман Д., 2013). Сегодня учёные не сомневаются и в том, что эпигенетические факторы играют ключевую роль в процессах развития и старения организма и даже могут стать причиной возникновения рака (Скиннер М., 2015). Ведь как сообщалось в предыдущем разделе (см. с.10), эпигенетические изменения происходят в тысячу раз чаще, чем генетические, скорее происходит эпигенетическая модификация, человеческое тело модифицируется в зависимости от состояния среды при наличии эпигенетического уровня управления.

По расчётам американского генетика Дж. Эйки, в каждом поколении человечества возникает около 100 миллиардов мутаций, из них 80% неблагоприятные («Наука и жизнь» № 11, 2013). А что же происходило с человечеством на протяжении сотен тысяч, а возможно и миллионов лет эволюции, сопровождающейся частыми природными катаклизмами: извержением вулканов, падением астероидов и других небесных тел, повышением температуры воздуха и снижением в нём кислорода и водорода? И большинству этих мутаций человек обязан состоянию среды.

1.5. Под влиянием природных катастроф, приводящих к массовым вымираниям, происходили изменения животного мира
<< 1 2 3 4 5 6 ... 9 >>
На страницу:
2 из 9

Другие электронные книги автора Сергей Юрьевич Кашников