Оценить:
 Рейтинг: 0

Старение как побочный эффект эволюции

Год написания книги
2016
<< 1 ... 4 5 6 7 8 9 >>
На страницу:
8 из 9
Настройки чтения
Размер шрифта
Высота строк
Поля

Невольно у исследователей возникает вопрос: кто же тогда командует парадом: человек или его микробиом? («В мире науки», 2012, № 7, С. 97).

При этом, характеризуя разнообразие взаимоотношений макро–микроорганизма, исследователи широко пользуются такими терминами, как «взаимное приспособление», обеспечивающее необходимые условия жизни для каждого из них, «борьба», «противодействие», «защита» и тому подобное (Саркисов Д. С., 2000). Эти термины являются не более чем проявлением антропоцентризма в оценке биологических явлений, то есть отражением известной «одухотворённости», «целенаправленности» в понимании сущности взаимоотношений макроорганизмов и микробов. Ничего этого нет в живой природе, а есть строго объективные процессы, протекающие на молекулярном уровне по строго эволюционно отработанным закономерностям и совершенно «безразличные» к тому, ради чего они совершаются и кому они приносят «вред» или «пользу».

Строго говоря, в природе существуют только реакции. Это не означает, что не следует пользоваться такими общепринятыми терминами, как «приспособление», «адаптация», «компенсация нарушенных функций» и т. п., но при этом нужно помнить, что ими нельзя ограничиваться, поскольку они отражают лишь внешнюю и субъективную оценку исследователем происходящих явлений, отнюдь не расшифровывающую сущности и особенностей физико-химических процессов каждого из них. Это содержит хорошо известную относительную целесообразность такого рода терминов и не столь редкие отрицательные эффекты действия приспособительных реакций, когда они приносят не пользу, а вред организму. Именно поэтому взаимоотношения макро- и микроорганизмов далеко не ограничиваются только симбиозом, то есть относительным благополучием, но и такими феноменами, как обострение процесса, вспышка аутоинфекции, повышение вирулентности и патогенности микроорганизмов и др. В целом можно утверждать, что вскрытие интимных механизмов взаимоотношений микробов и макроорганизма и направленная регуляция этих механизмов сегодня является ключевой проблемой инфекционной патологии.

Теперь хорошо известно (Саркисов Д.С., 2000), что микробы и вирусы, перестраиваясь в соответствии с окружающей средой под влиянием лечебных препаратов и т. д., могут длительно существовать в организме, продолжая оказывать на него отрицательное влияние. При этом очень важной особенностью любого патологического процесса является следующее: несмотря на то, что патологический процесс развивается на основе единства функциональных и структурных изменений, сопровождающихся повреждением органов и тканей, последнее немедленно компенсируется рядом защитно-приспособительных реакций. Возникшие при этом морфологические изменения не выходят в клинику, т. е. уже больной человек продолжает чувствовать себя вполне здоровым. Удовлетворительное объективное и субъективное состояние человека может длительно сохраняться при нарастающих морфологических изменениях внутренних органов.

Этот патологический процесс, по-видимому, и явился причиной метаморфоза (серьезных анатомических изменений) и возникновения теплокровности (см. раздел 1.11). То есть теплокровность, очевидно, нельзя считать только эволюционным «приобретением».

2.6. Инфекционные заболевания способны стимулировать эволюцию: способность выжить в контакте с болезнетворными бактериями и вирусами дается не просто так; у мутировавших особей ухудшается дыхание и наблюдаются различия в белках, достаточные для выделения их в отдельный вид, энергетически ослабленный

В 30-х годах прошлого века генетик Дж. Холдейн (J.B.S. Haldane) объяснил почему ген серповидно-клеточности, при котором развивается смертельно опасная анемия, регулярно встречается у представителей тропических регионов. Учёный предположил, что такая мутация служит неким компромиссом: несмотря на то, что она может привести к смерти, одновременно она делает человека в десять раз менее восприимчивым к малярии (Ариза Л.М., 2008).

Недавно смелая идея Холдейна о том, что инфекционные заболевания способны стимулировать эволюцию, была проверена в лаборатории на высокоорганизованных существах. Учёные взяли для эксперимента крошечных червей Caenorhabditis elegans, которые часто используются в качестве лабораторной модели.

В 2001 г. исследователи решили пронаблюдать, как черви в течение нескольких минут гибнут от инфекционной бактерии Pseudomonas aeruginosa. Однако через неделю они обнаружили, что в одной из 152 чашек Петри шевелились выжившие особи. Последующие эксперименты показали, что мутанты не только оказались устойчивы к этим бактериям, но даже и питались ими. При этом, по прошествии шести лет под микроскопом можно увидеть, что нормальные черви живо резвятся в зернистой массе бактерий Escherichia coli – они крутятся и вибрируют, словно наэлектризованные. Потомки же мутантов ведут себя совсем по-другому: они неторопливы и извиваются с осторожностью.

Различия в движениях червей показывают, что способность выжить в контакте с болезнетворными бактериями и вирусами дается не просто так. У мутировавших особей ухудшается дыхание (они потребляют на 30% меньше кислорода) и не столь безупречные навыки добывания пищи, как у диких собратьев. Видимо, мутантные линии могут выжить вместе со смертельными бактериями, т. к. пользуются альтернативными дыхательными ферментами. При этом изменившиеся черви, хотя ещё не стали самостоятельным видом, однако очень близки к этому. Исследователи обнаружили как минимум 7 различий в белках между двумя группами – а такое условие уже считается достаточным для выделения других нематод в отдельные виды.

Ранее экспериментаторы уже сообщали о спонтанных мутациях у вирусов и бактерий, причём такие быстрые изменения редко идут на пользу сложно организованным животным. Как отмечалось выше (см. раздел 1.8), согласно мнению английского антрополога Марка Томаса виды живых существ, которые меньше нуждаются в питательных веществах и кислороде, являются более энергетически слабыми видами. Ослабленный микробами организм обладает меньшим запасом энергии и меньшей продолжительностью жизни. Например, бактерия Wolbachia вдвое укорачивает жизнь плодовой мушки и настолько же (50%) жизненный цикл москита Aedes aegypti, который утрачивает способность кусать и передавать вирус Денгле или какую-либо другую инфекцию (Ногради Б., 2009).

Важнейшую роль в появлении новых видов своих хозяев и даже вызывать их гибель могут кишечные бактерии. Биологи из университета Вандербильта в Нэшвилле (США) изучили микроорганизмы, живущие внутри двух видов паразитических ос. Когда эти виды скрещивали, гибридные осы получали такой набор микроорганизмов, который приводил их к смерти. По мнению ученых, неспособность гибридов бороться с обычной микрофлорой и вынуждает два этих вида развиваться отдельно.

Человек не является исключением. Джонатан Притчард – профессор Чикагского университета (США) в статье «Эволюция: продолжение следует?» (2010) полагает, что выживание человека в условиях бедного кислородом воздуха, при опустошающем действии инфекционных болезней или под влиянием иных негативных факторов окружающей среды, в частности резкого сокращения продуктов питания могло быть обеспечено только генетическими изменениями.

То есть у человека в процессе эволюции в условиях глобального потепления и обеднённости воздуха кислородом, при опустошающем действии инфекционных болезней, как и у выживших особей червей Caenorhabditis elegans или у плодовой мушки и москита Aedes aegypti, вполне могли произойти мутации, направленные на ухудшение дыхания и сокращение продолжительности жизни. Может быть, именно поэтому уже при рождении человек испытывает недостаток кислорода. Обрезание пуповины прекращает подачу кислорода на целых 30% (Ермакова С. О., 2008) как и у выживших особей червей Caenorhabditis elegans! Крик младенца, вызывающий умиление родителей, есть не что иное, как проявление всепоглощающей паники от наступающего удушья. В условиях кислородного голодания – гипоксии новорожденные либо не выживают, либо в большинстве случаев, получают тяжелые осложнения, которые серьезно влияют на их дальнейшую жизнь.

Согласно мнению немецкого биолога Августа Вейсмана старение тоже следует рассматривать как процесс, появившийся в результате эволюции (см. раздел 1.1). А согласно мнению академика РАН В.П. Скулачева (см. фото 31): «Старение – это программа ослабления организма для того, чтобы ускорить эволюцию» (Кодзасова И., 2013). И, по мнению английского антрополога Марка Томаса, регулярные экологические катаклизмы уничтожали господствующие виды живых существ, открывая дорогу более энергетически слабым видам, которые меньше нуждались в питательных веществах и кислороде (Гор Р., 1989).

То есть старение – это программа ослабления организма, произошедшая в процессе эволюции по причине глобального потепления и уменьшения в атмосфере и гидросфере Земли кислорода. В результате этого произошли изменения в дыхательной системе млекопитающих (в том числе и человека), вызвав развитие теплокровности (см. раздел 1.11) и опустошающее действие инфекционных болезней (см. выше данный раздел). То есть проникновение патогенов в организм теплокровных.

2.7. Подавляющее большинство генетических заболеваний (более 70%) вызвано изменениями в геноме, связанными с включением в него дополнительного генетического материала, однако механизмы таких заболеваний сегодня меньше всего изучены

Согласно мнению учёных (Стент Г. и др., 1981) в клетках зародышевого пути (половых клетках) исходного эукариотического организма происходит внезапная многократная репликация определенной нуклеотидной последовательности хромосомы. Многочисленные копии этой последовательности затем передаются потомкам этого организма, причем в процессе такой передачи в них накапливаются мутации, которые были бы летальными, если бы этот организм содержал только одну копию данной последовательности.

Последние научные исследования говорят о том, что подавляющее большинство генетических заболеваний (более 70%) вызвано изменениями в геноме, связанными с включением в него дополнительного генетического материала (Жуков Б., 2009). Однако механизмы таких заболеваний сегодня меньше всего изучены.

По мнению А. А. Москалёва (см. раздел 1.1) «… у нашего вида постепенно накапливались варианты генов, имеющих отсроченные негативные последствия для здоровья» и «… эти последствия, то есть старение не стоит рассматривать с точки зрения физиологической нормы, сформированной естественным отбором, – это не более чем побочный эффект».

Обращает на себя внимание тот факт, что как показали эксперименты учёных, путём «выключения» активности некоторых генов можно «разблокировать» механизм регенерации клеток и «затормозить» процесс старения. Но не говорит ли это о том, что, таким образом, мы попросту снимаем блокаду, навязанную нам вирусами в процессе эволюции, возвращая тем самым организму данные ему изначально природные задатки? Нижеследующий материал заставляет задуматься над этим предположением.

– В 2003 г. Тибор Веллаи (Tibor Vellai), венгерский биолог, работавший во Фрайбургском университете (Германия), в опытах на червях получил первое свидетельство того, что подавление активности TOR-гена (от target of rapamycin), регулирующего клеточную пролиферацию, тормозит процессы старения: блокирование синтеза TOR-белка более чем вдвое увеличивало продолжительность жизни червей. Годом позже группа учёных из Калифорнийского технологического института получила аналогичные результаты для плодовой мушки.

– Опыт с червями-нематодами также показал, что когда была подавлена (заблокирована) экспрессия генов ELT-5 и ELT-6, кодирующих молекулярные переключатели, уровень которой с возрастом повышается, продолжительность жизни нематод увеличилась на 50%. При этом действие генов находится под контролем сигнальной системы, сходной с таковой для инсулина, который опосредует реакцию организма на недостаток пищи. В частности, в условиях дефицита калорий сигнальная система возвращает концентрацию факторов транскрипции – молекулярные переключатели, активирующие или инактивирующие другие гены к уровню, свойственному более молодому организму.

– В 2005 г. Брайан Кеннеди (Brian Kennedy) из Вашингтонского университета окончательно подтвердил данные о наличии связи между TOR и старением, продемонстрировав, что выключение различных генов TOR-системы у дрожжей продлевает их жизнь (Стипп Д., 2012).

При этом обращает на себя внимание тот факт, что TOR-система реагирует на такие стрессовые факторы, как понижение уровня кислорода и повреждение ДНК. Во всех случаях, когда возникает серьёзная угроза для клетки, активность ТОR падает. В результате вырабатывается меньше белков, и клетка может расходовать ресурсы на репарацию ДНК и другие неотложные нужды. А чем меньше вырабатывается белков, тем меньше размеры живого существа, меньше жизненной энергии и короче жизнь.

– В опытах на мышах удалось доказать, что при функционировании гена p16INK4a с возрастом медленнее восстанавливаются поврежденные ткани и в мышечных стволовых клетках накапливается комплекс белков, который способствует превращению мышечной ткани в соединительную. Однако если заблокировать этот ген, контролирующий клеточный рост и процессы регенрации, то появляется возможность «растормозить» механизм регенерации клеток (Мелинда Уэннер, 2009).

– Китайским ученым удалось открыть ген, отвечающий за старение клеток, оказывающий влияние на длину теломеров! При этом ученые пришли к выводу, что если заблокировать этот ген, то можно остановить старение организма. Ученые считают, что с развитием генной инженерии и нанотехнологий такая блокировка станет вполне возможной (Перфилов Ф., 2010).

– Уже известно, что провоспалительные цитокины, и в особенности ИЛ-1, напрямую участвуют в патогенезе экспериментального ишемического поражения. Центральное или периферическое введение рекомбинантного ИЛ-1 ra (рецепторного антогониста) грызунам редуцирует ишемическое поражение на 50% через 48 ч, а у мышей, лишённых генов ИЛ-1? и ИЛ-2?, наблюдалось 70% уменьшение инфарктного объёма по сравнению с обычными животными. Введение нейтрализующих анти-ИЛ-1?-антител также ингибировало экспериментальный инсульт у крыс. Таким образом, блокирование действия эндогенного ИЛ-1 снижало потерю ЦНС-клеток после экспериментального поражения мозга. Кроме того, селективное ингибирование каспазы 1, фермента необходимого для синтеза активного ИЛ-1?, редуцировало ишемическое поражение мозга, и мыши, у которых отсутствовал ген каспазы 1, также в гораздо меньшей степени были подвержены болезни (Бондаренко В. М. и др., 2011).

– В экспериментах на мышах исследователям, заблокировавшим действие гена, увеличивающего содержание RAGE (белок, участвующий в транспорте бета-амилоида из кровотока в мозг) в эндотелиальных клетках, удалось предотвратить повышение содержания этого белка. Есть вероятность, что RAGE-подавляющие лекарственные средства (которые сейчас разрабатываются) дадут такой же эффект у людей (Интерланди Д., 2013). Согласно последним данным бета-амилоид является причиной не только такого заведомо инфекционного заболевания как коровье бешенство, но и нейродегенеративного расстройства – болезни Альцгеймера (Самотаева Э. И., 2012).

– Специалист-геронтолог, Вальтер Лонго провёл интересный эксперимент: изъяв два гена – RAS-2 и SCH9, которые способствуют старению у дрожжевого грибка и развитию рака у человека и, посадив грибок на низкокалорийную диету, продлил его жизнь в масштабе, который теоретически невозможен. «Мы удлинили продолжительность жизни десятикратно, а это, полагаю, самое продолжительное удлинение, которое было когда-либо достигнуто на материале любого живого организма», – говорит ученый. Лонго убежден, что и человек может жить до 800 лет (Урусова В.И., 2011).

– При изучении механизма старения дрожжей учеными из Массачусетского технологического института оказалось, что чем старше становится клетка, тем больше в ней накапливается «мусора» – лишних фрагментов ДНК, неправильных белков, а также развиваются аномальные структуры в ядрышке (Первушин А., 2012).

– Американские специалисты по питанию давно обратили внимание, что ген FAT10, включающийся у людей во время воспалений и некоторых заболеваний, связан не только с иммунной системой, но и с накоплением жира в организме. В новом исследовании ген FAT10 попробовали выключить, и оказалось, что мыши с повреждённым геном живут на 20% дольше своих обычных собратьев и не накапливают жир, хотя их аппетит только возрастает. Авторы статьи ещё не знают, связано ли увеличение продолжительности жизни мышей с меньшей склонностью к ожирению или с каким-то пока неизвестным влиянием гена FAT10 (Canaan Allion et al.,2014).

В СМИ прошли сообщения о том, что ожирение у человека может вызывать банальная аденовирусная инфекция, ОРВИ. К настоящему времени известны несколько вирусов, способных вызывать ожирение, в частности, парамиксовирусы, которые у людей вызывают детские болезни (корь и свинку), вирус Рауса, вызывающий гиперлипемию и синдром тучности на фоне поражения щитовидной железы, но из всех инфекций для человека важнейшей является аденовирусная (Садовский А.С., 2007).

– Два гена – ген рецептора гормона роста и ген рецептора инсулинового фактора – очень хорошо известны в связи с изучением старения. Если воздействовать на эти участки, отключать их, то организмы становятся меньше, а живут дольше. Мышь, которой заблокировали ген рецептора гормона роста, стала карликовой, но прожила в два раза дольше (Константинов А., 2014).

– При сравнении старых и молодых тканей мыши и человека биологи обнаружили, что в постаревших тканях уровень экспрессии генов, регулируемых сигнальным путём NF-kB, повышается. Учёные из Стэнфордского университета создали трансгенных мышей, в коже которых сигнальный путь NF-kB в определённый момент можно было подавлять. Когда мыши постарели и стали заметны такие признаки старения, как истончение кожи, был включён ген ингибитора NF-kB. Это привело к заметному омоложению клеток кожи, маркеры клеточного старения исчезли, к стволовым клеткам вернулась изначальная способность к делению и восстановились утратившиеся слои кожи (Перцева М., 2015).

Биологи считают, что отключить генетические механизмы, программирующие смерть, теоретически возможно. Ведь если существуют организмы, у которых эти механизмы не работают, значит, их можно блокировать или вовсе убрать из генетической цепочки. Задача выключения всех механизмов, которые приближают смерть, не является в принципе нерешаемой, но она очень сложна. Решена она будет очень нескоро, особенно применительно к позвоночным и ко многим другим животным (Прокопенко И. С., 2015).

Некоторые учёные считают, что осуществлять коррекцию генома человека путём оперативного вмешательства в его гены чревато непредсказуемыми последствиями. Так, по утверждению известного геронтолога В. Н. Анисимова если вмешаться в гены человека и продлить ему жизнь, то можно спровоцировать появление раковых опухолей. И академик В.П. Скулачев считает, что «отменять старение принудительно, изменяя геном, человечество пока не готово, имеющийся инструментарий не позволяет это делать, да и последствия вмешательства в собственные гены могут быть опасны и необратимы».

Так, например, в 2006 г. было показано, что нормальный процесс возрастного угасания активности иммунной системы сопровождается старением стволовых клеток, постоянно пополняющих пул разного рода иммунных клеток. При этом показателем присутствия стареющих клеток, как было установлено, является повышение содержания белка, кодируемого геном р16 (Стипп Д., 2012). Оказалось, что с возрастом в клетках грызунов и человека становится всё больше данного белка, и это коррелирует с утратой способности клеток к пролиферации и устранению повреждений. Кроме того, было обнаружено, что с возрастом у человека резко увеличивается содержание белка р16 и в иммунных Т-клетках. Причём мыши с неактивным геном р16 по содержанию стареющих клеток напоминали более молодых животных и прекрасно регенерировали клетки поджелудочной железы, и нервные клетки в некоторых отделах головного мозга, чем их собратья с работающими р16-генами. Но, для того чтобы провести на человеке эксперименты, аналогичные таковым на мышах, нужно внести изменения в геном плода или даже эмбриона. По мнению исследователей вряд ли это удастся осуществить в ближайшее время, а возможно, не удастся вообще. Простая инактивация гена р16 может привести к повышению скорости пролиферации клеток и в итоге к раку. Однако учёные надеются, что возможно эта проблема разрешится неожиданно простым способом.

Значит нужно искать другой способ коррекции генома, без оперативного вмешательства в него. И такой способ есть. Мы знаем, что эпигенетическая информация чётко обособлена от самой ДНК, изменяется в ответ на сигналы из окружающей среды и участвует в регуляции клеточных функций, что человеческое тело модифицируется в зависимости от состояния среды при наличии эпигенетического уровня управления (см. раздел 1.2).

2.8. Некодирующая часть ДНК – вовсе не «мусор». Гены (по крайней мере, 99% из них) принадлежат не нашему геному, а геному микроорганизмов, обитающих в нашем теле

В разделе 1.3 мы сообщали о том, что все животные имеют огромную часть древних «спящих» генов и лишь незначительную долю работающих, что у человека эта доля составляет всего 8,2%. Вся остальная часть ДНК – около 95 % – это «мусорная ДНК». «Мусорная ДНК» – это гигантский эволюционный шлейф, который тянется за человеком миллионы лет эволюции и бережно хранится в кладовых его клеток.

На основе новейших технологий было установлено, что «мусорная ДНК» состоит из весьма не похожих друг на друга частей. Например, из древних ретровирусов, которые когда-то свирепствовали на Земле, а потом по неизвестной причине перестали размножаться и застыли в нашем геноме, как след от каблука в бетоне. Ещё есть не работающие лишние копии генов, которые отвечали за что-то тысячи лет назад. Ещё есть «спящие» гены, которые отвечают, к примеру, за способность отбрасывать хвост, и так далее (Кудрявцева Е., 2014). Учёные изучили огромный массив информации и выяснили: так называемая «мусорная ДНК» содержит некие переключатели, которые сами не работают, но каким-то образом регулируют работу других генов и от них, в том числе зависит вероятность возникновения той или иной болезни – от диабета и рака до сердечно-сосудистых или психических расстройств.

По одной из версий, «мусорная ДНК» вообще двигатель эволюции: учёные посчитали, что если бы эволюция шла постепенно за счёт мутаций в функциональной части ДНК, человек так бы и не возник до сих пор – не хватило бы времени. Но эволюция шла рывками, которые выводили виды на новые витки развития. По мнению учёных, происходило это именно благодаря «мусорной ДНК», вернее её особой части, которую окрестили «прыгучим геномом». Так называют небольшие кусочки генома, которые ведут себя по типу вирусов – могут вырезать себя из одного места хромосомы и переставлять в другое. Эти кусочки генома получили название транспозонов.

Например, в 2013 году биологи из Йельского университета (США) установили, что 100 млн лет назад будущий человек потерял сумку на животе и стал вынашивать детей в утробе: кусок «мусорной ДНК» вытеснил из генома часть, соответствующую сумчатым. По мнению учёных, возможно, что эволюция человека шла под контролем этих мобильных генетических элементов – транспозонов, которые в отличие от обычных генов, кодирующих нужные организму белки, способны вырезать сами себя из одной части генома и встраиваться в другую, иногда включаясь в жизненно важные гены и выводя их из строя. Фактически, по утверждению ученых, транспозоны являются работающими на себя геномными паразитами, которые содержат информацию, обеспечивающую их перемещение с места на место.

Аппарат перемещения включает фермент транспозазу, который вырезает транспозон и «вшивает» его в другое место в геноме (Соарес К., 2008). Многие живые организмы выработали в ходе эволюции механизмы устранения транспозонов и других мобильных элементов, и в результате от них почти не осталось следа. Генетикам из Германии и Венгрии удалось воссоздать давно исчезнувшего предшественника, по крайней мере, двух генов современного человека, Harbinger3-DR, который представляет собой не простой сегмент реликтовой ДНК, а древний транспозон.

Учёные хотят понять, как «прыгающие гены», утратившие некоторые основные части своего аппарата перемещения, включаются в геном организма-хозяина и влияют на его эволюцию.

Обращает на себя внимание, что транспозоны являются работающими на себя паразитами и ведут себя по типу вирусов (см. выше данный раздел). Так вирусолог из Колумбийского университета (США) профессор Винсент Раканиелло (2013), утверждает, что вирусы играют ключевую роль в эволюционном процессе: они тасуют гены, перенося их от одного организма к другому и между разными участками генома хозяина. Они в четкой последовательности вводят в клетки живых организмов программы ДНК и таким образом обеспечивают необходимую корректировку хода эволюции (Кузина С., 2012). По сути, вирус похож на микроскопического робота или на компьютерную дискету – оболочку с хранящейся в ней информацией, которая заставляет нас меняться. Не случайно согласно теории Н. Н. Исаева, жизнь человека тоже можно сравнить с компьютерной программой, «сбой» в которой может либо приблизить, либо отсрочить старение и смерть (Шлионская И., 2011).

Таким образом, и вирусы, и транспозоны нарушая последовательность нуклеотидов, влияют на эволюцию живых существ.

Из факторов среды, оказывающих влияние на организм человека вирусы – наиболее жизнеспособные структуры, способные более других факторов приводить к эволюционным сдвигам, меняя генетическую программу клеток, при этом оставаясь не затронутыми. Этому способствует и быстрая репродукция вируса, обусловливающая его потрясающую мутагенность: каждое следующее поколение вируса немного не такое, как предыдущее («Оракул Здоровья» № 1, 2009). Даже после смерти организма-хозяина вирус остается в нем в жизнеспособном состоянии в течении тысяч лет. Например, при исследовании тканей одной из мумий человека, умершего несколько тысяч лет назад в Древнем Египте от натуральной оспы, были обнаружены вполне жизнеспособные структуры вируса. И это – спустя тысячелетия! Согласно последним результатам секвенирования (расшифровки) вируса оспы выяснилось, что он содержит особые белки, способные активно влиять на иммунные реакции организма человека (Макунин., 2010).

Что же мы имеем? Некодирующая часть ДНК – вовсе не «мусор». Гены (по крайней мере, 99% из них) принадлежат не нашему геному, а геному микроорганизмов, обитающих в нашем теле (Джонсон Д., 2014).
<< 1 ... 4 5 6 7 8 9 >>
На страницу:
8 из 9

Другие электронные книги автора Сергей Юрьевич Кашников