Оценить:
 Рейтинг: 0

Ген. Очень личная история

Год написания книги
2016
Теги
<< 1 2 3 4 5 6
На страницу:
6 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

Де Фриз тоже штудировал книги Дарвина и ухватился за теорию пангенезиса, согласно которой «частицы информации» со всего тела каким-то образом скапливаются и распределяются в сперматозоидах и яйцеклетках. Но идея, что сообщения от клеток поступают в сперму и объединяются там в руководство по построению организма, казалась совсем уж спекулятивной – как если бы сперма пыталась писать Книгу Человека, составляя ее из телеграмм.

Против пангенезиса и геммул накапливались и экспериментальные свидетельства. В 1883 году немецкий зоолог и эмбриолог Август Вейсман[179 - В 1883 году немецкий зоолог: Schwartz J. Pangenes // In Pursuit of the Gene: From Darwin to DNA. Cambridge, MA: Harvard University Press, 2008.] с беспощадной решимостью провел эксперимент, прицельно атакующий дарвиновскую теорию геммул как основы наследственности. Вейсман отреза?л хвосты пяти поколениям мышей и скрещивал бесхвостых животных между собой, чтобы проверить, будет ли потомство тоже бесхвостым. Но из поколения в поколение ничего не менялось, мыши упорно рождались с полноценными хвостами. Если бы геммулы существовали, у грызунов с хирургически удаленными хвостами были бы бесхвостые дети. В общей сложности Вейсман получил 901 потомка, но все они родились абсолютно нормальными, с хвостами ничуть не короче обычных; истребить этот «наследственный порок» (во всяком случае, «наследственный хвост») было невозможно. Каким бы жутким этот эксперимент ни был, он показал, что Дарвин и Ламарк ошибались.

Вейсман предложил радикальную альтернативу: быть может, наследственная информация содержится исключительно в сперматозоидах и яйцеклетках, а механизма прямого переноса приобретенных признаков в половые клетки не существует? Как бы старательно предок жирафа ни вытягивал шею, эта информация не могла попасть в его наследственный материал, который Вейсман назвал зародышевой плазмой[180 - Вейсман назвал зародышевой плазмой: Weismann A., Parker W. N., R?nnfeldt H. The Germ-Plasm: a Theory of Heredity. NY: Scribner’s, 1893.]. Он утверждал, что только с ее помощью один организм может породить другой. И в самом деле, всю эволюцию можно представить как вертикальный перенос зародышевой плазмы от одного поколения к другому: для курицы яйцо – единственный способ передать информацию другой курице.

Вопросом о материальной природе зародышевой плазмы задался де Фриз. Подобна ли она краске, то есть может ли смешиваться и разбавляться? Или информация в ней дискретна и упакована порциями, каждая из которых – цельное, неразрывное сообщение? Де Фризу пока не попадалась статья Менделя. Но, подобно Менделю, ученый принялся обыскивать окрестности Амстердама в поисках необычных вариантов растений. В его гербарии оказался не только горох, но и огромное множество других растений с перекрученными стеблями или раздвоенными листьями, с цветками в крапинку или с ворсистыми пыльниками, с семенами в форме летучей мыши – набралась целая коллекция монстров. Скрещивая странные растения с нормальными, де Фриз вслед за Менделем обнаружил, что варианты признаков не растворяются, а в дискретной и независимой форме сохраняются в поколениях. Де Фриз понял, что у каждого растения есть набор признаков: окраска цветков, форма листьев, текстура семян – и каждый из этих признаков кодируется независимой, дискретной порцией информации, которая передается от поколения к поколению.

Но де Фризу не хватало ключевого озарения Менделя – того «луча» математической аргументации, который так ярко осветил эксперименты с гибридами гороха в 1865 году. Из собственных опытов с растительными гибридами де Фриз с трудом вывел только то, что изменчивые признаки вроде высоты стебля кодируются неделимыми частицами информации. Но сколько частиц нужно, чтобы закодировать один такой признак? Одна? Сто? Тысяча?

В 1880-х де Фриз, все еще не знакомый с работой Менделя, стоял на пороге количественного осмысления своих экспериментов с растениями. В эпохальной статье 1897 года, озаглавленной «Наследственные уродства» (Hereditary Monstrosities)[181 - В эпохальной статье 1897 года: Schwartz J. In Pursuit of the Gene, 83.], он проанализировал свои данные и заключил, что каждый признак обусловлен единичной частицей информации. Гибрид наследует две такие частицы: одну – от спермия, другую – от яйцеклетки. Затем в целости и сохранности эти частицы передаются в составе половых клеток следующему поколению. Ничто не смешивается. Не теряется ни капли информации. Де Фриз назвал такие частицы пангенами[182 - Де Фриз назвал такие частицы пангенами: Stamhuis I. H., Meijer O. G., Zevenhuizen E. J. A. Hugo de Vries on heredity, 1889–1903: Statistics, Mendelian laws, pangenes, mutations. Isis. 1999; 238–67.]. Это название противоречило собственному происхождению: хотя ученый систематически опровергал дарвиновскую теорию пангенезиса, таким образом он отдал дань уважения своему наставнику. Весной 1900 года де Фризу, с головой погруженному в работу с гибридными растениями, друг прислал копию старой статьи из недр своей библиотеки. «Я знаю, ты изучаешь гибриды[183 - «Я знаю, ты изучаешь гибриды»: Sandler I., Sandler L. A conceptual ambiguity that contributed to the neglect of Mendel’s paper. History and Philosophy of the Life Sciences. 1985; 1 (7): 9.], – писал друг, – так что, возможно, приложенный к этому письму оттиск статьи 1865 года за авторством некоего Менделя <…> все еще представляет для тебя интерес».

Легко вообразить, как серым мартовским утром де Фриз в своем амстердамском кабинете развернул этот оттиск и пробежал глазами первый абзац. От мощного дежавю он должен был ощутить в позвоночнике типичный холодок: «некий Мендель» совершенно точно опередил де Фриза на три с лишним десятилетия. В статье Менделя ученый нашел ответ на свой вопрос, идеальное подтверждение результатов собственных экспериментов – и серьезный вызов их научной новизне. Ему будто бы выпало вновь пережить старую сагу о Дарвине и Уоллесе: открытие, которое он надеялся объявить своим, в действительности уже было сделано кем-то другим. В панике де Фриз быстро расправился со своей статьей о гибридах растений, тщательно избегая любых упоминаний работы Менделя, и опубликовал ее в марте 1900 года. Быть может, мир уже забыл «некоего Менделя» и его эксперименты с гибридами гороха в каком-то Брно. «Скромность – это добродетель[184 - «Скромность – это добродетель»: Larson E. J. Evolution: The Remarkable History of a Scientific Theory. NY: Modern Library, 2004.], – напишет де Фриз позже, – но без нее можно продвинуться дальше».

Хуго де Фриз не был единственным, кто самостоятельно пришел к менделевской идее независимых и неделимых наследственных инструкций. В тот же год, когда он опубликовал свое монументальное исследование[185 - В тот же год, когда он опубликовал свое монументальное исследование: Rheinberger H.-J. Mendelian inheritance in Germany between 1900 and 1910. The case of Carl Correns (1864–1933). Comptes Rendus de l’Acadеmie des Sciences – Series III – Sciences de la Vie. 2000; 12 (323): 1089–1096.] растительных вариантов, вышла статья тюбингенского ботаника Карла Корренса об эксперименте с гибридами гороха и кукурузы, где в точности воспроизводились результаты Менделя. По иронии судьбы Корренс учился у Негели в Мюнхене. Но Негели не соизволил рассказать Корренсу о куче посвященных гороховым гибридам писем от «некоего Менделя», чудака-дилетанта.

В своих экспериментальных садах в Мюнхене и Тюбингене, расположенных всего в 650 км от брненского аббатства, Корренс кропотливо скрещивал высокие растения с низкими, а полученные гибриды – между собой, не подозревая, что лишь методично повторяет эксперименты Менделя. Завершив свои исследования и начав готовить статью к публикации, он решил поискать в библиотеке какие-нибудь работы научных предшественников. Там-то Корренс и наткнулся на погребенную в местечковом журнале статью Менделя.

В Вене – в том самом городе, где Мендель в 1856 году провалил экзамен по ботанике, – переоткрыл его законы другой молодой ботаник, Эрих Чермак-Зейзенегг[186 - С учетом дворянского титула – Эрих Чермак, эдлер фон Зейзенегг.]. Чермак учился в университетах Галле и Гента и работал с гибридами гороха. Он тоже заметил, что наследственные признаки передаются между поколениями гибридов независимо, по отдельности, как частицы. Самый молодой из трех ученых, Чермак сначала узнал о двух параллельных исследованиях, в точности подтверждающих его результаты, а уже потом вновь погрузился в научную литературу и нашел работу Менделя. У него, вероятно, тоже бежал холодок по спине во время чтения первых строк. «Тогда я тоже еще верил, что открыл что-то новое»[187 - «Тогда я тоже еще верил, что открыл что-то новое»: Lanham U. Origins of Modern Biology. NY: Columbia University Press, 1968.], – позже писал Чермак с плохо скрываемыми завистью и унынием.

Если открытие переоткрыли единожды – это подтверждение чьей-то научной прозорливости. Если трижды – это уже скандал. За каких-то три месяца в 1900 году вышли три статьи, повторявших работу Менделя. Они подтверждали беспросветную близорукость биологов, игнорировавших его исследования почти 40 лет. Даже де Фриз, «забывший» упомянуть Менделя в своей первой статье, был вынужден признать его вклад. Той же весной, вскоре после выхода статьи де Фриза, Карл Корренс предположил, что автор умышленно присвоил труд Менделя, а значит, его работа попахивает плагиатом (как ерничал Корренс, «по странному совпадению»[188 - «по странному совпадению»: Correns C. G. Mendel’s law concerning the behavior of progeny of varietal hybrids. Genetics. 1950; 5 (35): 33–41.] де Фриз в свою статью привнес даже «лексикон Дарвина»). И де Фриз сдался. В следующей версии анализа растительных гибридов он уже с энтузиазмом упоминал Менделя и признавался, что лишь «развил» его более ранние наработки.

На самом же деле де Фриз экспериментально продвинулся дальше Менделя. Пусть тот и опередил его в открытии единиц наследственности, но де Фриза по мере погружения в проблему связи наследственности и эволюции все больше занимала мысль, когда-то озадачившая и Менделя: как возникают новые варианты признаков? Что за сила делает растения гороха высокими или низкими, а его цветы – пурпурными или белыми?

И вновь ответ таился в саду. В очередной раз скитаясь по сельской местности в поисках интересных образцов, де Фриз наткнулся на громадную куртину дикой энотеры[189 - де Фриз наткнулся на громадную куртину: Schwartz J. In Pursuit of the Gene, 111.], которая быстро отвоевывала пространство у соседних растений. История снова проявила чувство юмора: этот вид энотеры, как позже выяснит де Фриз, был назван в честь Ламарка – Oenothera lamarckiana[190 - Позже выяснилось, что это не отдельный вид, и филогенетически верное название этого растения – Oenothera glazioviana (энотера/ослинник Глазиу).]. Де Фриз собрал в тех зарослях 50 тысяч семян и посеял их у себя. В следующие годы, когда эта агрессивная энотера хорошенько размножилась, де Фриз насчитал 800 самопроизвольно возникших новых вариантов – растений с гигантскими листьями, ворсистыми стеблями, цветами необычной формы. Природа спонтанно породила редких уродцев – именно этот механизм, по мнению Дарвина, должен обеспечивать первый этап эволюции. Вместо дарвиновских «спортов» де Фриз выбрал для таких редких форм более солидное название – мутанты[191 - более солидное название – мутанты: De Vries H. The Mutation theory (vol. 1). Chicago: Open Court, 1909.] (от латинского «изменяться»)[192 - «Мутанты» де Фриза могли быть не спонтанно возникшими вариантами, а плодами обратных скрещиваний (скрещиваний гибрида с одним из его родителей или генетически близким к кому-то из них организмом). – Прим. автора.].

Де Фриз быстро осознал важность своих наблюдений: эти мутанты должны были играть роль недостающих фрагментов эволюционной мозаики Дарвина. Действительно, если совместить самопроизвольное появление мутантов – скажем, энотеры с гигантскими листьями – с естественным отбором, это автоматически приведет в движение дарвиновский вечный двигатель. За счет мутаций в природе возникают новые варианты: длинношеие антилопы, короткоклювые вьюрки, растения с гигантскими листьями. Такие формы спонтанно появляются среди множества нормальных особей (в отличие от Ламарка, де Фриз решил, что мутанты формируются не целенаправленно, а случайным образом). Вариативные признаки наследуются, то есть передаются в виде дискретных инструкций, содержащихся в половых клетках. Животные борются за выживание, и самые приспособленные варианты – то есть самые полезные мутации – последовательно отбираются. Потомство выживших наследует эти удачные мутации и формирует новые виды, тем самым направляя эволюцию. Иными словами, естественный отбор работает не с организмами, а с их единицами наследственности. В курице де Фриз в конце концов увидел лишь способ яйца создать яйцо получше.


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2 3 4 5 6
На страницу:
6 из 6

Другие электронные книги автора Сиддхартха Мукерджи