Оценить:
 Рейтинг: 0

Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Год написания книги
2017
Теги
<< 1 2 3 4 >>
На страницу:
2 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля
У всех нас есть базовые представления об энергии. Мы знаем, что разные ее формы влияют на нашу жизнь: мы используем газ, чтобы ездить на машинах, электричество питает телевизоры, тостеры, холодильники, электропечи и другие приборы, как и батарейки в наших камерах, пульты управления, мобильные телефоны; и этот список можно продолжать и продолжать. Проще говоря, энергия – это фундаментальное физическое свойство каждой системы. Таким образом, она во многом напоминает другие физические свойства, которые мы используем при описании той или иной системы, например температуру, давление или плотность. Сама же система может представлять собой что угодно: машину, движущуюся по автостраде, чашку горячего кофе или Тихий океан. Мы можем обоснованно говорить об энергии системы, а иногда даже определять ее.

Сама энергия очень иллюзорна, потому что она принимает множество разных форм и может быстро переходить из одной формы в другую или же изменять свою форму без каких-либо на то предпосылок. Как следует из ее физических свойств, энергия действительно хамелеон. Это типичное поведение энергии подспудно проступает и через то, как мы говорим о ней: о ее способности выполнять определенную работу, создавать движение и менять температуру. Ее неясная природа, трудности при ее описании и отсутствие точной картины состава вещества – причины, по которым понимание энергии всегда было непростой задачей.

Она была настолько трудна, что до 1850 года мы даже не могли договориться о том, называть ли ее «энергией». С тех пор многое изменилось, и сегодня наше понимание выглядит довольно впечатляюще. Только взгляните на все эти разнообразные механизмы, которые мы создали, чтобы жизнь была проще, а ее качество выросло; современные технологии действительно удивляют. Первые механизмы работали только при помощи человека или животных, подобные простые механизмы не только упрощали жизнь, они также дали нам первые идеи о том, что же такое энергия и как она себя ведет.

Компенсация природы и простые механизмы

Для древних людей тяжелый ручной труд был неизбежностью. Покоряя суровую реальность, они стали умнее и создали простые механизмы (рычаг, наклонную плоскость, винт, шкив, колесо и клин), чтобы облегчить свой труд. Эти приспособления, должно быть, казались магическими: с передвижением предмета, которое прежде требовало невероятных усилий (или это вовсе было невозможно), теперь легко справлялся простой механизм. Однако один неизменный факт был болезненно ясен: за механическое преимущество, которое приносили эти устройства, всегда приходилось платить свою цену – компенсацию, или плату Вселенной за работу, завершаемую с меньшим усилием.

Давайте получше разберемся в работе простых механизмов. Рассмотрим наклонную плоскость (она похожа на пандус для инвалидного кресла), которую раньше использовали, чтобы поднять объект на нужную высоту. Ее единственная цель – доставить что-либо на определенную высоту с меньшими усилиями, чем при прямом подъеме. На протяжении всей истории наклонная плоскость приносила пользу многим цивилизациям. Доисторические люди использовали ее, чтобы перемещать тяжелые объекты. С использованием наклонной плоскости строились и египетские пирамиды. Древний осадный настил, незаменимое военное орудие, позволял нападавшим с легкостью преодолевать вражеские стены.

В отличие от других простых механизмов, саму наклонную плоскость не нужно двигать, чтобы использовать. Другими словами, для ее применения не требуется прикладывать силу к самой наклонной плоскости. Поэтому механический эффект возникает просто благодаря движению по ней. Отсутствие необходимого движения – одна из главных причин, по которой наклонную плоскость не считали простым механизмом; из шести простых механизмов ее последней признали таковой в эпоху Ренессанса, когда математики вычислили ее механическое преимущество.

Любой, кто хоть раз поднимался по лестнице, уже знаком с наклонной плоскостью, но лестница – чуть более необычная ее версия. При помощи лестницы вы можете перемещаться с одной высоты на другую с меньшим усилием, или, что важнее, затрачивая меньшую силу. Вот ее основная цель. То же самое происходит и когда вы используете наклонную плоскость, чтобы переместить объект снизу вверх. Теперь, когда требуется меньше силы, объекты, которые было невозможно сдвинуть с места, перемещаются легко, а те, которые перемещались с трудом, – очень легко. Но есть и ловушка: вы должны будете переместить объект дальше, чем прежде. То есть если вы хотите использовать наклонную плоскость, чтобы с меньшим усилием переместить какой-либо объект (а кто не хотел бы?), то вы должны переместить объект на большее расстояние, чтобы добраться до желаемой высоты, чем если бы вы двигались снизу вверх. Вероятно, вам и так это известно, если вам доводилось пользоваться лестницей.

Сравните длину всей лестницы, по которой вы поднимаетесь, с фактической высотой, которую вы преодолели от начала пути. Эта высота всегда меньше расстояния, пройденного по лестнице. Другими словами, большее расстояние – цена за меньшую силу, прилагаемую для подъема. Если же вы решите подняться на аналогичную высоту (прямо снизу), вы точно взберетесь быстрее, однако потратите значительно больше сил. Поэтому у нас в домах ступенчатые лестницы, а не приставные.

Таким образом, наклонная плоскость не уникальна: меньшие затраты энергии с одной стороны требуют прохождения большего расстояния с другой – это объединяет все шесть простых механизмов.

Сила, расстояние и работа

Итак, мы видим связь между необходимой силой и пройденным расстоянием при подъеме на определенную высоту с помощью наклонной плоскости. Давайте уточним этот момент: сила, необходимая для перемещения объекта по наклонной плоскости (или лестнице), меньше силы, требуемой для перемещения того же объекта по вертикальной приставной лестнице на ту же высоту. Другими (более математическими) словами:

F

< F

,

где F – это сила, а знак «<» означает «меньше, чем». Цена, которую мы платим за роскошь приложения меньшей силы, – увеличение расстояния, которое мы должны преодолеть:

d

> d

,

где знак «>» означает «больше, чем». В нашем примере вы перемещаете себя, но в целом это может быть что угодно; возможно, вы нечто несете или двигаете. Независимо от этого отношения между силой и расстоянием всегда сохраняются.

Неравенства, приведенные выше, дают нам четкое понимание взаимоотношений между силой и расстоянием. Основываясь на них, мы легко видим, что при росте одного из показателей другой снижается. Таким образом, между силой и расстоянием существует некий компенсирующий эффект. Фактически эти эффекты прекрасно сбалансированы, и, вне зависимости от того, что мы используем – наклонную плоскость или лестницу, – мы в любом случае выполним одну и ту же работу:

Работа = (сила, затраченная на движение объекта) ? (пройденное объектом расстояние).

Поэтому с точки зрения работы при движении с использованием наклонной плоскости в сравнении с использованием приставной лестницы справедливо следующее:

A

= A

,

где A – это работа. Это означает, что объем работы, необходимой для перемещения чего-либо на определенную высоту, остается неизменным. Другими словами, природе все равно, как именно вы что-либо куда-либо доставите; необходимый объем работы будет тем же – ни меньше, ни больше.

Данная закономерность становится понятнее, когда мы рассматриваем случай, в котором мы поднимаем объект на определенную высоту. Чему мы противостоим? Мы противостоим силе притяжения Земли[1 - С другой стороны, падение с той же высоты не требует с вашей стороны вообще никакой работы. Эту работу выполняет Земля. Поэтому спускаться вниз по лестнице гораздо легче, чем подниматься.], а подъем чего-либо на большую высоту увеличивает потенциальную энергию этого объекта. Позднее мы поговорим о потенциальной энергии подробнее, но сейчас отметим, что работа и энергия тесно взаимосвязаны. Более того, мы начинаем подозревать, что природа имеет тенденцию сохранять энергию.

Заманчиво предположить, что мы могли бы создать машину, которая позволит нам использовать меньше силы, чтобы перемещать объекты, без необходимости дополнительно преодолевать требуемое расстояние. К сожалению, никакого «бесплатного сыра» нет. Когда дело доходит до законов Вселенной, становится ясно, что эта машина в действительности никогда не будет существовать. Возможно, никто не сказал об этом яснее, чем Галилео Галилей (1564–1642):

«Я видел (если не ошибаюсь), как многие механики обманулись, пытаясь использовать механизмы, изначально непригодные для определенных работ, в то время как многие другие также пошли по ложному пути за своими ожиданиями. Это разочарование, как мне кажется, основано на том, что эти люди верили и продолжают верить, будто они смогут поднять больший вес, приложив меньше силы, как если бы их машины могли обмануть природу, которая и без того любит нам отказывать. Ее основной закон: никакое сопротивление нельзя преодолеть меньшей силой, чем исходная».

Тем не менее многие пытались (и до сих пор пытаются) «обмануть» Вселенную тем или иным способом. Ярким примером этого служит «вечный двигатель», который должен выполнять работу бесконечное количество времени посредством минимальных усилий. Как мы увидим позже, он также обречен на неудачу, учитывая систему строгих «сдержек и противовесов» энергии и работы, тщательно сохраняемых Вселенной.

Глава 2

Качание, падение и вращение

Основы энергии

Наше обсуждение простых механизмов показывает, что природа не желает отдавать свою энергию даром. Тем не менее эти устройства упрощают нашу жизнь (и даже сегодня мы продолжаем использовать их как части более сложных машин, которые работают с использованием человеческого труда или топлива), и есть компенсирующий эффект. И, насколько мы знаем, этот привычный уклад не изменить.

Пока люди изучали другие системы, простые или посложнее, эта тема возникала вновь и вновь в разных формах. Эксперименты с качающимися маятниками, падающими объектами и предметами, катящимися вниз – ну, по чему бы еще – по наклонной плоскости (да, опять она, но в этот раз уже не в качестве простейшего механизма), помогли подняться на следующий уровень понимания. Результат этих экспериментов лег в основу понимания энергии. И никто не потратил на изучение этих систем больше времени, чем Галилео Галилей.

Качающаяся люстра

Галилео Галилей, старший из шести детей, родился в Пизе 15 февраля 1564 года в семье Винченцо Галилея и Джулии Амманнати. Винченцо, музыкант-теоретик и практик, жил скромно, зарабатывая исполнением и преподаванием музыки. Часть его работ, однако, была опубликована. В его самой значимой книге, Fronimo (содержавшей много композиций для двух лютней), мы видим выражение настоящей страсти (или аддикции) к музыке: он играл на своей лютне «гуляя по городу, катаясь на лошади, стоя у окна, лежа в постели».

Галилей научился у своего отца нескольким вещам. Благодаря тому, что они с отцом много играли дуэтом – Галилео играл партию второй лютни, – он стал искушенным лютнистом. Как и его отец, Галилео был вольнодумцем, и они оба любили выставлять авторитетных людей дураками, например, побеждая их в споре. Как устойчивый сторонник эмпирического исследования, Винченцо проводил эксперименты, чтобы проверить свои музыкальные теории. В частности, он установил фундаментальные отношения между частотой колебаний струны и ее натяжением: частота колебаний прямо пропорциональна квадратному корню из натяжения. Уважение отца к необходимости проверять теорию с помощью экспериментального наблюдения, несомненно, влияло на Галилео, поскольку стало краеугольным камнем всех его научных изысканий. Его мать, хотя и была образованной женщиной, была упряма, отличалась трудным характером и была слабо привязана к Галилео или его младшему брату Микеланджело, который за год до смерти матери (а она умерла в 1620 году) с удивлением отмечал, что она была «все так же ужасна».

Галилео жил в Пизе, пока ему не исполнилось десять, а затем переехал во Флоренцию. После некоторого начального обучения у наставника (который брал пять лир в месяц) он наконец поступил на учебу в монастырь Валломброза под Флоренцией. Тогда-то, скорее всего, и начался его роман с астрологией. Кроме того, тогда же он почувствовал интерес к религии – но его отец тут же пресек это, забрав Галилео из монастыря под предлогом того, что его глаза нуждались в медицинском уходе.

Решив, что Галилео должен построить карьеру в медицине (вероятно, потому что это была престижная и хорошо оплачиваемая профессия и потому что самый выдающийся предок их семьи был доктором), Винченцо в 1581 году записал сына в Пизанский университет. В те дни чтобы стать доктором, нужно было знать наизусть естественную философию Аристотеля. Это задача, должно быть, была разочарованием для Галилео, который написал: «Кажется, что нет ни одного явления, стоящего внимания, с которым он [Аристотель] столкнулся бы без рассмотрения».

Из всех тем, которые затрагивал Аристотель, воображение Галилео, безусловно, захватила физика. Тем не менее к учению Аристотеля по этому предмету[2 - Скептицизм Галилео относительно учения Аристотеля в физике был предопределен. Так как Аристотель в основном изучал логику, психологию, политологию и различные проблемы биологии (особенно классификацию растений и животных), мало какие из его работ в области физики оказались непреходящими ценностями, за исключением самого слова «физика», которое происходит от греческого phusika, что означает «природа».] Галилео подошел весьма требовательно. Очевидно, Галилео подвергал сомнению не только учение Аристотеля, поскольку в первые годы в университете он заработал репутацию студента, любящего перечить преподавателям, которых он считал главным образом высокомерными, некритически настроенными мыслителями, отчаянно цепляющимися за бессмысленную традицию. Галилео начал терять интерес к своим медицинским курсам. Примерно в это время жизнь Галилео резко изменилась.

Каждый год накануне Рождества двор великого герцога Франческо переезжал из Флоренции в Пизу, где оставался до Пасхи. Среди его придворных был математик Остилио Риччи (1540–1603). В 1583 году, в течение второго года Галилео в университете, Риччи был в Пизе и преподавал «Начала» Евклида[3 - Евклид – древнегреческий математик, расцвет его научной деятельности пришелся примерно на 300 год до н. э.] служителям суда. Так как на эти лекции пускали только членов Тосканского суда, Галилео пришлось прятаться за дверью, чтобы слушать. Так Галилео впервые прикоснулся к реальной математике, и он был очарован[4 - Вероятнее всего, Галилео пользовался итальянским переводом «Начал» Евклида, сделанным Никколо Тартальей (1499/1500–1557). Отличительная черта этого текста – правильное и полное описание теории отношений Евдокса Книдского (греческий математик, астроном и философ, 390–340 до н. э.), в отличие от других двух латинских текстов, существовавших во время Галилео. Теория пропорции Евдокса позволила Галилео развить новую науку о движении.].

Он вернулся, чтобы услышать больше лекций, все время храня свое присутствие в тайне. Вдохновленный этими лекциями, Галилео самостоятельно изучил Евклида. В конечном счете он подошел к Риччи с вопросами, и именно тогда придворный математик увидел талант Галилея к математике. Риччи посоветовал Галилео продолжать самостоятельное обучение и предложил свою помощь. После официального знакомства Галилео, Риччи и Винченцо стали друзьями. Риччи рассказал Винченцо, что у Галилео талант к математике, которую тот предпочел исследованию медицины. Винченцо (сам бывший хорошим математиком) ничего не имел против, но хотел, чтобы его сын получил медицинскую степень. Он согласился, что Риччи будет учить Галилео, в тайне надеясь, что его сын все же продолжит основное обучение. Этого не произошло. Галилео полностью забросил медицинское образование и в 1585 году покинул университет без степени.

После отъезда из Пизанского университета Галилео продолжал изучать математику самостоятельно, а также давал частные уроки во Флоренции и Сиене. В это время Риччи познакомил Галилео с работами Архимеда (ок. 287–212 до н. э.). Работы Евклида предоставили Галилео твердую математическую базу, в то время как Архимед показал ему силу математики в приложении к проблемам физики. Действительно, Галилео был большим поклонником Архимеда и оставался им всю жизнь. Однако физика Архимеда относилась только к статичным объектам. Галилео же станет тем, кто расширит познания физики в отношении динамичных объектов.

В 1586 году Галилео написал свое первое научное эссе под названием «Маленькие весы», где он объяснил, как построить и применять устройство для измерения удельного веса. Эта работа содержала комбинацию прагматических и теоретических аспектов; последний он заимствовал из работ Архимеда. В 1587 году Галилео обнаружил способ вычислить центр тяжести определенных твердых тел. Используя инновационный и практический подход, он вышел за рамки работ Архимеда и привлек внимание выдающихся математиков в Италии и, впервые, за границей.

В 1588 году Галилео попытался устроиться на кафедру математики в Болонском университете. В это время его математический опыт состоял из отдельных встреч с Риччи, частных уроков, которые он давал во Флоренции и Сиене, и самостоятельного обучения. Хорошо осознавая, что профессионального опыта у него мало, Галилео указал, что ему «приблизительно 26». На самом деле ему было двадцать три года. Место на кафедре в итоге досталось Джованни Антонио Маджини (1555–1617). Маджини был астрономом, астрологом, издал некоторые книги и был на девять лет старше Галилео. Также, вероятно, сыграло свою роль и то, что он был выпускником университета.

Галилео становился известным, что, вкупе с помощью его покровителей, позволило ему получить должность преподавателя математики в Пизанском университете в 1589 году. Галилео получал всего половину зарплаты своего предшественника, что делало его одним из самых низкооплачиваемых среди его коллег в университете. Работая в Пизе, Галилео умудрился оскорбить преподавателей философии критикой физики Аристотеля, и становилось ясно, что его контракт в Пизе, вероятно, по истечении 1592 года не будут возобновлять.

Уже в 1590 году друзья и покровители Галилео начали искать возможность добиться для него места на кафедре математики в Падуанском университете, которое оставалось свободным с 1588 году. В 1592 году благодаря репутации хорошего математика Галилео стал преподавателем в университете Падуи, и платили ему в три раза больше, чем в Пизе.

В Падуе Галилео провел восемь лет, обустраиваясь на новом месте и завязывая знакомства. Он вел расслабленный образ жизни, уделяя время своим интересам и сосредотачивая свои научные исследования больше на практике, а не на теории. В 1599 году Галилео приобрел большой дом с садом и виноградником. Здесь он приютил студентов (с их слугами), которые подолгу оставались с ним и обслуживали вместе с медником мастерскую по изготовлению инструментов. Частные уроки, которые он давал, и университетские курсы оставляли Галилео мало свободного времени.

<< 1 2 3 4 >>
На страницу:
2 из 4