Оценить:
 Рейтинг: 0

Essays: Scientific, Political, and Speculative, Volume I

Год написания книги
2017
<< 1 2 3 4 5 6 7 ... 18 >>
На страницу:
3 из 18
Настройки чтения
Размер шрифта
Высота строк
Поля

Thus, starting from the general laws of things, and the known chemical attributes of organic matter, we may conclude deductively that the homogeneous germs of organisms have a peculiar proclivity towards a non-homogeneous state; which may be either the state we call decomposition, or the state we call organization.

At present we have reached a conclusion only of the most general nature. We merely learn that some kind of heterogeneity is inevitable; but as yet there is nothing to tell us what kind. Besides that orderly heterogeneity which distinguishes organisms, there is the disorderly or chaotic heterogeneity, into which a loose mass of inorganic matter lapses; and at present no reason has been given why the homogeneous germ of a plant or animal should not lapse into the disorderly instead of the orderly heterogeneity. But by pursuing still further the line of argument hitherto followed we shall find a reason.

We have seen that the instability of homogeneous aggregates in general, and of organic ones in particular, is consequent on the various ways and degrees in which their constituent parts are exposed to the disturbing forces brought to bear on them: their parts are differently acted upon, and therefore become different. Manifestly, then, a rationale of the special changes which a germ undergoes, must be sought in the particular relations which its several parts bear to each other and to their environment. However it may be masked, we may suspect the fundamental principle of organization to be, that the many like units forming a germ acquire those kinds and degrees of unlikeness which their respective positions entail.

Take a mass of unorganized but organizable matter – either the body of one of the lowest living forms, or the germ of one of the higher. Consider its circumstances. It is immersed in water or air; or it is contained within a parent organism. Wherever placed, however, its outer and inner parts stand differently related to surrounding existences – nutriment, oxygen, and the various stimuli. But this is not all. Whether it lies quiescent at the bottom of the water, whether it moves through the water preserving some definite attitude, or whether it is in the inside of an adult; it equally results that certain parts of its surface are more directly exposed to surrounding agencies than other parts – in some cases more exposed to light, heat, or oxygen, and in others to the maternal tissues and their contents. The destruction of its original equilibrium is therefore certain. It may take place in one of two ways. Either the disturbing forces may be such as to overbalance the affinities of the organic elements, in which case there results that chaotic heterogeneity known as decomposition; or, as is ordinarily the case, such changes are induced as do not destroy the organic compounds, but only modify them: the parts most exposed to the modifying forces being most modified. Hence result those first differentiations which constitute incipient organization. From the point of view thus reached, suppose we look at a few cases: neglecting for the present all consideration of the tendency to assume the inherited type.

Note first what appear to be exceptions, as the Amœba. In this creature and its allies, the substance of the jelly-like body remains throughout life unorganized – undergoes no permanent differentiations. But this fact, which seems directly opposed to our inference, is really one of the most significant evidences of its truth. For what is the peculiarity of the Rhizopods, exemplified by the Amœba? They undergo perpetual and irregular changes of shape – they show no persistent relations of parts. What lately formed a portion of the interior is now protruded, and, as a temporary limb, is attached to some object it happens to touch. What is now a part of the surface will presently be drawn, along with the atom of nutriment sticking to it, into the centre of the mass. Thus there is an unceasing interchange of places; and the relations of inner and outer have no settled existence. But by the hypothesis, it is only in virtue of their unlike positions with respect to modifying forces, that the originally-like units of a living mass become unlike. We must not therefore expect any established differentiation of parts in creatures which exhibit no established differences of position in their parts.

This negative evidence is borne out by abundant positive evidence. When we turn from these ever-changing specks of living jelly to organisms having unchanging distributions of substance, we find differences of tissue corresponding to differences of relative position. In all the higher Protozoa, as also in the Protophyta, we meet with a fundamental differentiation into cell-membrane and cell-contents, answering to that fundamental contrast of conditions implied by the words outside and inside. And on passing from what are roughly classed as unicellular organisms to the lowest of those which consist of aggregated cells, we equally observe the connexion between structural differences and differences of circumstance. In the sponge, permeated throughout by currents of sea-water, the absence of definite organization corresponds with the absence of definite unlikeness of conditions. In the Thalassicolla of Professor Huxley – a transparent, colourless body, found floating passively at the surface of the sea, and consisting essentially of "a mass of cells united by jelly" – there is displayed a rude structure obviously subordinated to the primary relations of centre and surface: in all of its many and important varieties, the parts exhibit a more or less concentric arrangement.

After this primary modification, by which the outer tissues are differentiated from the inner, the next in order of constancy and importance is that by which some part of the outer tissues is differentiated from the rest; and this corresponds with the almost universal fact that some part of the outer tissues is more directly exposed to certain environing influences than the rest. Here, as before, the apparent exceptions are extremely significant. Some of the lowest vegetable organisms, as the Hematococci and Protococci, evenly imbedded in a mass of mucus, or dispersed through the Arctic snow, display no differentiations of surface: the several parts of the surface being subjected to no definite contrasts of conditions. The Thalassicolla above mentioned, unfixed, and rolled about by the waves, presents all its sides successively to the same agencies; and all its sides are alike. A ciliated sphere like the Volvox has no parts of its periphery unlike other parts; and it is not to be expected that it should have; seeing that as it revolves in all directions, it does not, in traversing the water, permanently expose any part to special conditions. But when we come to creatures that are either fixed, or while moving, severally preserve a definite attitude, we no longer find uniformity of surface. The gemmule of a Zoophyte, which during its locomotive stage is distinguishable only into outer and inner tissues, no sooner takes root than its upper end begins to assume a different structure from its lower. The free-swimming embryo of an aquatic annelid, being ovate and not ciliated all over, moves with one end foremost; and its differentiations proceed in conformity with this contrast of circumstances.

The principle thus displayed in the humbler forms of life, is traceable during the development of the higher; though being here soon masked by the assumption of the hereditary type, it cannot be traced far. Thus the "mulberry-mass" into which a fertilized ovum of a vertebrate animal first resolves itself, soon begins to exhibit a difference between the outer and inner parts answering to the difference of circumstances. The peripheral cells, after reaching a more complete development than the central ones, coalesce into a membrane enclosing the rest; and then the cells lying next to these outer ones become aggregated with them, and increase the thickness of the germinal membrane, while the central cells liquefy. Again, one part of the germinal membrane presently becomes distinguishable as the germinal spot; and without asserting that the cause of this is to be found in the unlike relations which the respective parts of the germinal membrane bear to environing influences, it is clear that we have in these unlike relations an element of disturbance tending to destroy the original homogeneity of the germinal membrane. Further, the germinal membrane by and by divides into two layers, internal and external; the one in contact with the liquefied interior part or yelk, the other exposed to the surrounding fluids: this contrast of circumstances being in obvious correspondence with the contrast of structures which follows it. Once more, the subsequent appearance of the vascular layer between these mucous and serous layers, as they have been named, admits of a like interpretation. And in this and the various complications which now begin to show themselves, we may see coming into play that general law of the multiplication of effects flowing from one cause, to which the increase of heterogeneity was elsewhere ascribed.[9 - See Essay on "Progress: its Law and Cause."]

Confining our remarks, as we do, to the most general facts of development, we think that some light is thus thrown on them. That the unstable equilibrium of a homogeneous germ must be destroyed by the unlike exposure of its several units to surrounding influences, is an a priori conclusion. And it seems also to be an a priori conclusion, that the several units thus differently acted upon, must either be decomposed, or must undergo such modifications of nature as may enable them to live in the respective circumstances they are thrown into: in other words —they must either die or become adapted to their conditions. Indeed, we might infer as much without going through the foregoing train of reasoning. The superficial organic units (be they the outer cells of a "mulberry-mass," or be they the outer molecules of an individual cell) must assume the function which their position necessitates; and assuming this function, must acquire such character as performance of it involves. The layer of organic units lying in contact with the yelk must be those through which the yelk is absorbed; and so must be adapted to the absorbent office. On this condition only does the process of organization appear possible. We might almost say that just as some race of animals, which multiplies and spreads into divers regions of the earth, becomes differentiated into several races through the adaptation of each to its conditions of life; so, the originally homogeneous population of cells arising in a fertilized germ-cell, becomes divided into several populations of cells that grow unlike in virtue of the unlikeness of their circumstances.

Moreover, it is to be remarked in further proof of our position, that it finds its clearest and most abundant illustrations where the conditions of the case are the simplest and most general – where the phenomena are the least involved: we mean in the production of individual cells. The structures which presently arise round nuclei in a blastema, and which have in some way been determined by those nuclei as centres of influence, evidently conform to the law; for the parts of the blastema in contact with the nuclei are differently conditioned from the parts not in contact with them. Again, the formation of a membrane round each of the masses of granules into which the endochrome of an alga-cell breaks up, is an instance of analogous kind. And should the recently-asserted fact that cells may arise round vacuoles in a mass of organizable substance, be confirmed, another good example will be furnished; for such portions of substance as bound these vacant spaces are subject to influences unlike those to which other portions of the substance are subject. If then we can most clearly trace this law of modification in these primordial processes, as well as in those more complex but analogous ones exhibited in the early changes of an ovum, we have strong reason for thinking that the law is fundamental.

But, as already more than once hinted, this principle, understood in the simple form here presented, supplies no key to the detailed phenomena of organic development. It fails entirely to explain generic and specific peculiarities; and leaves us equally in the dark respecting those more important distinctions by which families and orders are marked out. Why two ova, similarly exposed in the same pool, should become the one a fish, and the other a reptile, it cannot tell us. That from two different eggs placed under the same hen, should respectively come forth a duckling and a chicken, is a fact not to be accounted for on the hypothesis above developed. Here we are obliged to fall back upon the unexplained principle of hereditary transmission. The capacity possessed by an unorganized germ of unfolding into a complex adult which repeats ancestral traits in minute details, and that even when it has been placed in conditions unlike those of its ancestors, is a capacity impossible for us to understand. That a microscopic portion of seemingly structureless matter should embody an influence of such kind, that the resulting man will in fifty years after become gouty or insane, is a truth which would be incredible were it not daily illustrated. But though the manner in which hereditary likeness, in all its complications, is conveyed, is a mystery passing comprehension, it is quite conceivable that it is conveyed in subordination to the law of adaptation above explained; and we are not without reasons for thinking that it is so. Various facts show that acquired peculiarities resulting from the adaptation of constitution to conditions, are transmissible to offspring. Such acquired peculiarities consist of differences of structure or composition in one or more of the tissues. That is to say, of the aggregate of similar organic units composing a germ, the group going to the formation of a particular tissue, will take on the special character which the adaptation of that tissue to new circumstances had produced in the parents. We know this to be a general law of organic modifications. Further, it is the only law of organic modifications of which we have any evidence.[10 - This was written before the publication of the Origin of Species. I leave it standing because it shows the stage of thought then arrived at.] It is not impossible then that it is the universal law; comprehending not simply those minor modifications which offspring inherit from recent ancestry, but comprehending also those larger modifications distinctive of species, genus, order, class, which they inherit from antecedent races of organisms. And thus it may be that the law of adaptation is the sole law; presiding not only over the differentiation of any race of organisms into several races, but also over the differentiation of the race of organic units composing a germ, into the many races of organic units composing an adult. So understood, the process gone through by every unfolding organism will consist, partly in the direct adaptation of its elements to their several circumstances, and partly in the assumption of characters resulting from analogous adaptations of the elements of all ancestral organisms.

But our argument does not commit us to any such far-reaching speculation as this; which we introduce simply as suggested by it, not involved. All we are here concerned to show, is, that the deductive method aids us in interpreting some of the more general phenomena of development. That all homogeneous aggregates are in unstable equilibrium is a universal truth, from which is deducible the instability of every organic germ. From the known sensitiveness of organic compounds to chemical, thermal, and other disturbing forces, we further infer the unusual instability of every organic germ – a proneness far beyond that of other homogeneous aggregates to lapse into a heterogeneous state. By the same line of reasoning we are led to the additional inference, that the first divisions into which a germ resolves itself, being severally in a state of unstable equilibrium, are similarly prone to undergo further changes; and so on continuously. Moreover, we have found it to be equally an a priori conclusion, that as, in all other cases, the loss of homogeneity is due to the different degrees and kinds of force brought to bear on the different parts; so, in this case too, difference of circumstances is the primary cause of differentiation. Add to which, that as the several changes undergone by the respective parts thus diversely acted upon, are changes which do not destroy their vital activity, they must be changes which bring that vital activity into subordination to the incident forces – they must be adaptations; and the like must be in some sense true of all the subsequent changes. Thus by deductive reasoning we get some insight into the method of organization. However unable we are, and probably ever shall be, to comprehend the way in which a germ is made to take on the special form of its race, we may yet comprehend the general principles which regulate its first modifications; and, remembering the unity of plan so conspicuous throughout nature, we may suspect that these principles are in some way concerned in succeeding modifications.

A controversy now going on among zoologists, opens yet another field for the application of the deductive method. We believe that the question whether there does or does not exist a necessary correlation among the several parts of an organism is determinable a priori.

Cuvier, who first asserted this necessary correlation, professed to base his restorations of extinct animals upon it. Geoffroy St. Hilaire and De Blainville, from different points of view, contested Cuvier's hypothesis; and the discussion, which has much interest as bearing on paleontology, has been recently revived under a somewhat modified form: Professors Huxley and Owen being respectively the assailant and defender of the hypothesis.

Cuvier says – "Comparative anatomy possesses a principle whose just development is sufficient to dissipate all difficulties; it is that of the correlation of forms in organized beings, by means of which every kind of organized being might, strictly speaking, be recognized by a fragment of any of its parts. Every organized being constitutes a whole, a single and complete system, whose parts mutually correspond and concur by their reciprocal reaction to the same definite end. None of these parts can be changed without affecting the others; and consequently each taken separately, indicates and gives all the rest." He then gives illustrations: arguing that the carnivorous form of tooth necessitating a certain action of the jaw, implies a particular form in its condyles; implies also limbs fit for seizing and holding prey; therefore implies claws, a certain structure of the leg-bones, a certain form of shoulder-blade. Summing up he says, that "the claw, the scapula, the condyle, the femur, and all the other bones, taken separately, will give the tooth or one another; and by commencing with any one, he who had a rational conception of the laws of the organic economy, could reconstruct the whole animal."

It will be seen that the method of restoration here contended for, is based on the alleged physiological necessity of the connexion between these several peculiarities. The argument used is, not that a scapula of a certain shape may be recognized as having belonged to a carnivorous mammal because we always find that carnivorous mammals do possess such scapulas; but the argument is that they must possess them, because carnivorous habits would be impossible without them. And in the above quotation Cuvier asserts that the necessary correlation which he considers so obvious in these cases, exists throughout the system: admitting, however, that in consequence of our limited knowledge of physiology we are unable in many cases to trace this necessary correlation, and are obliged to base our conclusions upon observed coexistences, of which we do not understand the reason, but which we find invariable.

Now Professor Huxley has recently shown that, in the first place, this empirical method, which Cuvier introduces as quite subordinate, and to be used only in aid of the rational method, is really the method which Cuvier habitually employed – the so-called rational method remaining practically a dead letter; and, in the second place, he has shown that Cuvier himself has in several places so far admitted the inapplicability of the rational method, as virtually to surrender it as a method. But more than this, Professor Huxley contends that the alleged necessary correlation is not true. Quite admitting the physiological dependence of parts on each other, he denies that it is a dependence of a kind which could not be otherwise. "Thus the teeth of a lion and the stomach of the animal are in such relation that the one is fitted to digest the food which the other can tear, they are physiologically correlated; but we have no reason for affirming this to be a necessary physiological correlation, in the sense that no other could equally fit its possessor for living on recent flesh. The number and form of the teeth might have been quite different from that which we know them to be, and the construction of the stomach might have been greatly altered; and yet the functions of these organs might have been equally well performed."

Thus much is needful to give an idea of the controversy. It is not here our purpose to go more at length into the evidence cited on either side. We simply wish to show that the question may be settled deductively. Before going on to do this, however, let us briefly notice two collateral points.

In his defence of the Cuvierian doctrine, Professor Owen avails himself of the odium theologicum. He attributes to his opponents "the insinuation and masked advocacy of the doctrine subversive of a recognition of the Higher Mind." Now, saying nothing about the questionable propriety of thus prejudging an issue in science, we think this is an unfortunate accusation. What is there in the hypothesis of necessary, as distinguished from actual, correlation of parts, which is particularly in harmony with Theism? Maintenance of the necessity, whether of sequences or of coexistences, is commonly thought rather a derogation from divine power than otherwise. Cuvier says – "None of these parts can be changed without affecting the others; and consequently, each taken separately, indicates and gives all the rest." That is to say, in the nature of things the correlation could not have been otherwise. On the other hand, Professor Huxley says we have no warrant for asserting that the correlation could not have been otherwise; but have not a little reason for thinking that the same physiological ends might have been differently achieved. The one doctrine limits the possibilities of creation; the other denies the implied limit. Which, then, is most open to the charge of covert Atheism?

On the other point we lean to the opinion of Professor Owen. We agree with him in thinking that where a rational correlation (in the highest sense of the term) can be made out, it affords a better basis for deduction than an empirical correlation ascertained only by accumulated observations. Premising that by rational correlation is not meant one in which we can trace, or think we can trace, a design, but one of which the negation is inconceivable (and this is the species of correlation which Cuvier's principle implies); then we hold that our knowledge of the correlation is of a more certain kind than where it is simply inductive. We think that Professor Huxley, in his anxiety to avoid the error of making Thought the measure of Things, does not sufficiently bear in mind the fact, that as our notion of necessity is determined by some absolute uniformity pervading all orders of our experiences, it follows that an organic correlation which cannot be conceived otherwise, is guaranteed by a much wider induction than one ascertained only by the observation of organisms. But the truth is, that there are relatively few organic correlations of which the negation is inconceivable. If we find the skull, vertebræ, ribs, and phalanges of some quadruped as large as an elephant; we may indeed be certain that the legs of this quadruped were of considerable size – much larger than those of a rat; and our reason for conceiving this correlation as necessary, is, that it is based, not only upon our experiences of moving organisms, but upon all our mechanical experiences relative to masses and their supports. But even were there many physiological correlations really of this order, which there are not, there would be danger in pursuing this line of reasoning, in consequence of the liability to include within the class of truly necessary correlations, those which are not such. For instance, there would seem to be a necessary correlation between the eye and the surface of the body: light being needful for vision, it might be supposed that every eye must be external. Nevertheless it is a fact that there are creatures, as the Cirrhipedia, having eyes (not very efficient ones, it may be) deeply imbedded within the body. Again, a necessary correlation might be assumed between the dimensions of the mammalian uterus and those of the pelvis. It would appear impossible that in any species there should exist a well-developed uterus containing a full-sized fœtus, and yet that the arch of the pelvis should be too small to allow the fœtus to pass. And were the only mammal having a very small pelvic arch, a fossil one, it would have been inferred, on the Cuvierian method, that the fœtus must have been born in a rudimentary state; and that the uterus must have been proportionally small. But there happens to be an extant mammal having an undeveloped pelvis – the mole – which presents us with a fact that saves us from this erroneous inference. The young of the mole are not born through the pelvic arch at all; but in front of it! Thus, granting that some quite direct physiological correlations may be necessary, we see that there is great risk of including among them some which are not.

With regard to the great mass of the correlations, however, including all the indirect ones, Professor Huxley seems to us warranted in denying that they are necessary; and we now propose to show deductively the truth of his thesis. Let us begin with an analogy.

Whoever has been through an extensive iron-works, has seen a gigantic pair of shears worked by machinery, and used for cutting in two, bars of iron that are from time to time thrust between its blades. Supposing these blades to be the only visible parts of the apparatus, anyone observing their movements (or rather the movement of one, for the other is commonly fixed), will see from the manner in which the angle increases and decreases, and from the curve described by the moving extremity, that there must be some centre of motion – either a pivot or an external box equivalent to it. This may be regarded as a necessary correlation. Moreover, he might infer that beyond the centre of motion the moving blade was produced into a lever, to which the power was applied; but as another arrangement is just possible, this could not be called anything more than a highly probable correlation. If now he went a step further, and asked how the reciprocal movement was given to the lever, he would perhaps conclude that it was given by a crank. But if he knew anything of mechanics, he would know that it might possibly be given by an eccentric. Or again, he would know that the effect could be achieved by a cam. That is to say, he would see that there was no necessary correlation between the shears and the remoter parts of the apparatus. Take another case. The plate of a printing-press is required to move up and down to the extent of an inch or so; and it must exert its greatest pressure when it reaches the extreme of its downward movement. If now anyone will look over the stock of a printing-press maker, he will see half a dozen different mechanical arrangements by which these ends are achieved; and a machinist would tell him that as many more might readily be invented. If, then, there is no necessary correlation between the special parts of a machine, still less is there between those of an organism.

From a converse point of view the same truth is manifest. Bearing in mind the above analogy, it will be foreseen that an alteration in one part of an organism will not necessarily entail some one specific set of alterations in the other parts. Cuvier says, "None of these parts can be changed without affecting the others; and consequently, each taken separately, indicates and gives all the rest." The first of these propositions may pass, but the second, which it is alleged follows from it, is not true; for it implies that "all the rest" can be severally affected in only one way and degree, whereas they can be affected in many ways and degrees. To show this, we must again have recourse to a mechanical analogy.

If you set a brick on end and thrust it over, you can predict with certainty in what direction it will fall, and what attitude it will assume. If, again setting it up, you put another on the top of it, you can no longer foresee with accuracy the results of an overthrow; and on repeating the experiment, no matter how much care is taken to place the bricks in the same positions, and to apply the same degree of force in the same direction, the effects will on no two occasions be exactly alike. And in proportion as the aggregation is complicated by the addition of new and unlike parts, will the results of any disturbance become more varied and incalculable. The like truth is curiously illustrated by locomotive engines. It is a fact familiar to mechanical engineers and engine-drivers, that out of a number of engines built as accurately as possible to the same pattern, no two will act in just the same manner. Each will have its peculiarities. The play of actions and reactions will so far differ, that under like conditions each will behave in a somewhat different way; and every driver has to learn the idiosyncrasies of his own engine before he can work it to the greatest advantage. In organisms themselves this indefiniteness of mechanical reaction is clearly traceable. Two boys throwing stones will always differ more or less in their attitudes, as will two billiard-players. The familiar fact that each individual has a characteristic gait, illustrates the point still better. The rhythmical motion of the leg is simple, and on the Cuvierian hypothesis, should react on the body in some uniform way. But in consequence of those slight differences of structure which consist with identity of species, no two individuals make exactly similar movements either of the trunk or the arms. There is always a peculiarity recognizable by their friends.

When we pass to disturbing forces of a non-mechanical kind, the same truth becomes still more conspicuous. Expose several persons to a drenching storm; and while one will subsequently feel no appreciable inconvenience, another will have a cough, another a catarrh, another an attack of diarrhœa, another a fit of rheumatism. Vaccinate several children of the same age with the same quantity of virus, applied to the same part, and the symptoms will not be quite alike in any of them, either in kind or intensity; and in some cases the differences will be extreme. The quantity of alcohol which will send one man to sleep, will render another unusually brilliant – will make this maudlin, and that irritable. Opium will produce either drowsiness or wakefulness: so will tobacco.

Now in all these cases – mechanical and other – some force is brought to bear primarily on one part of an organism, and secondarily on the rest; and, according to the doctrine of Cuvier, the rest ought to be affected in a specific way. We find this to be by no means the case. The original change produced in one part does not stand in any necessary correlation with every one of the changes produced in the other parts; nor do these stand in any necessary correlation with one another. The functional alteration which the disturbing force causes in the organ directly acted upon, does not involve some particular set of functional alterations in the other organs; but will be followed by some one out of various sets. And it is a manifest corollary, that any structural alteration which may eventually be produced in the one organ, will not be accompanied by some particular set of structural alterations in the other organs. There will be no necessary correlation of forms.

Thus Paleontology must depend upon the empirical method. A fossil species that was obliged to change its food or habits of life, did not of necessity undergo the particular set of modifications exhibited; but, under some slight change of predisposing causes – as of season or latitude – might have undergone some other set of modifications: the determining circumstance being one which, in the human sense, we call fortuitous.

May we not say then, that the deductive method elucidates this vexed question in physiology; while at the same time our argument collaterally exhibits the limits within which the deductive method is applicable. For while we see that this extremely general question may be satisfactorily dealt with deductively; the conclusion arrived at itself implies that the more special phenomena of organization cannot be so dealt with.

There is yet another method of investigating the general truths of physiology – a method to which physiology already owes one luminous idea, but which is not at present formally recognized as a method. We refer to the comparison of physiological phenomena with social phenomena.

The analogy between individual organisms and the social organism, is one that has from early days occasionally forced itself on the attention of the observant. And though modern science does not countenance those crude ideas of this analogy which have been from time to time expressed since the Greeks flourished; yet it tends to show that there is an analogy, and a remarkable one. While it is becoming clear that there are not those special parallelisms between the constituent parts of a man and those of a nation, which have been thought to exist; it is also becoming clear that the general principles of development and structure displayed in organized bodies are displayed in societies also. The fundamental characteristic both of societies and of living creatures, is, that they consist of mutually-dependent parts; and it would seem that this involves a community of various other characteristics. Those who are acquainted with the broad facts of both physiology and sociology, are beginning to recognize this correspondence not as a plausible fancy, but as a scientific truth. And we are strongly of opinion that it will by and by be seen to hold to an extent which few at present suspect.

Meanwhile, if any such correspondence exists, it is clear that physiology and sociology will more or less interpret each other. Each affords its special facilities for inquiry. Relations of cause and effect clearly traceable in the social organism, may lead to the search for analogous ones in the individual organism; and may so elucidate what might else be inexplicable. Laws of growth and function disclosed by the pure physiologist, may occasionally give us the clue to certain social modifications otherwise difficult to understand. If they can do no more, the two sciences can at least exchange suggestions and confirmations; and this will be no small aid. The conception of "the physiological division of labour," which political economy has already supplied to physiology, is one of no small value. And probably it has others to give.

In support of this opinion, we will now cite cases in which such aid is furnished. And in the first place, let us see whether the facts of social organization do not afford additional support to some of the doctrines set forth in the foregoing parts of this article.

One of the propositions supported by evidence was that in animals the process of development is carried on, not by differentiations only, but by subordinate integrations. Now in the social organism we may see the same duality of process; and further, it is to be observed that the integrations are of the same three kinds. Thus we have integrations which arise from the simple growth of adjacent parts that perform like functions: as, for instance, the coalescence of Manchester with its calico-weaving suburbs. We have other integrations which arise when, out of several places producing a particular commodity, one monopolizes more and more of the business, and leaves the rest to dwindle: witness the growth of the Yorkshire cloth-districts at the expense of those in the west of England; or the absorption by Staffordshire of the pottery-manufacture, and the consequent decay of the establishments that once flourished at Worcester, Derby, and elsewhere. And we have those yet other integrations which result from the actual approximation of the similarly-occupied parts: whence result such facts as the concentration of publishers in Paternoster Row, of lawyers in the Temple and neighbourhood, of corn-merchants about Mark Lane, of civil engineers in Great George Street, of bankers in the centre of the city. Finding thus that in the evolution of the social organism, as in the evolution of individual organisms, there are integrations as well as differentiations, and moreover that these integrations are of the same three orders; we have additional reason for considering these integrations as essential parts of the developmental process, needed to be included in its formula. And further, the circumstance that in the social organism these integrations are determined by community of function, confirms the hypothesis that they are thus determined in the individual organism.

Again, we endeavoured to show deductively, that the contrasts of parts first seen in all unfolding embryos, are consequent upon the contrasted circumstances to which such parts are exposed; that thus, adaptation of constitution to conditions is the principle which determines their primary changes; and that, possibly, if we include under the formula hereditarily-transmitted adaptations, all subsequent differentiations may be similarly determined. Well, we need not long contemplate the facts to see that some of the predominant social differentiations are brought about in an analogous way. As the members of an originally-homogeneous community multiply and spread, the gradual separation into sections which simultaneously takes place, manifestly depends on differences of local circumstances. Those who happen to live near some place chosen, perhaps for its centrality, as one of periodical assemblage, become traders, and a town springs up; those who live dispersed, continue to hunt or cultivate the earth; those who spread to the sea-shore fall into maritime occupations. And each of these classes undergoes modifications of character fitting to its function. Later in the process of social evolution these local adaptations are greatly multiplied. In virtue of differences of soil and climate, the rural inhabitants in different parts of the kingdom, have their occupations partially specialized; and are respectively distinguished as chiefly producing cattle, or sheep, or wheat, or oats, or hops, or cider. People living where coal-fields are discovered become colliers; Cornishmen take to mining because Cornwall is metalliferous; and the iron-manufacture is the dominant industry where ironstone is plentiful. Liverpool has assumed the office of importing cotton, in consequence of its proximity to the district where cotton goods are made; and for analogous reasons Hull has become the chief port at which foreign wools are brought in. Even in the establishment of breweries, of dye-works, of slate-quarries, of brick-yards, we may see the same truth. So that, both in general and in detail, these industrial specializations of the social organism which characterize separate districts, primarily depend on local circumstances. Of the originally-similar units making up the social mass, different groups assume the different functions which their respective positions entail; and become adapted to their conditions. Thus, that which we concluded, a priori, to be the leading cause of organic differentiations, we find, a posteriori, to be the leading cause of social differentiations. Nay further, as we inferred that possibly the embryonic changes which are not thus directly caused, are caused by hereditarily-transmitted adaptations; so, we may actually see that in embryonic societies, such changes as are not due to direct adaptations, are in the main traceable to adaptations originally undergone by the parent society. The colonies founded by distinct nations, while they are alike in exhibiting specializations caused in the way above described, grow unlike in so far as they take on, more or less, the organizations of the nations they sprung from. A French settlement does not develop exactly after the same manner as an English one; and both assume forms different from those which Roman settlements assumed. Now the fact that the differentiation of societies is determined partly by the direct adaptation of their units to local conditions, and partly by the transmitted influence of like adaptations undergone by ancestral societies, tends strongly to enforce the conclusion, otherwise reached, that the differentiation of individual organisms, similarly results from immediate adaptations compounded with ancestral adaptations.

From confirmations thus furnished by sociology to physiology, let us now pass to a suggestion similarly furnished. A factory, or other producing establishment, or a town made up of such establishments, is an agency for elaborating some commodity consumed by society at large; and may be regarded as analogous to a gland or viscus in an individual organism. If we inquire what is the primitive mode in which one of these producing establishments grows up, we find it to be this. A single worker, who himself sells the produce of his labour, is the germ. His business increasing, he employs helpers – his sons or others; and having done this, he becomes a vendor not only of his own handiwork, but of that of others. A further increase of his business compels him to multiply his assistants, and his sale grows so rapid that he is obliged to confine himself to the process of selling: he ceases to be a producer, and becomes simply a channel through which the produce of others is conveyed to the public. Should his prosperity rise yet higher, he finds that he is unable to manage even the sale of his commodities, and has to employ others, probably of his own family, to aid him in selling; so that, to him as a main channel are now added subordinate channels. Moreover, when there grow up in one place, as a Manchester or a Birmingham, many establishments of like kind, this process is carried still further. There arise factors and buyers, who are the channels through which is transmitted the produce of many factories; and we believe that primarily these factors were manufacturers who undertook to dispose of the produce of smaller houses as well as their own, and ultimately became salesmen only. Under a converse aspect, all the stages of this development have been within these few years exemplified in our railway contractors. There are sundry men now living who illustrate the whole process in their own persons – men who were originally navvies, digging and wheeling; who then undertook some small sub-contract, and worked along with those they paid; who presently took larger contracts, and employed foremen; and who now contract for whole railways, and let portions to sub-contractors. That is to say, we have men who were originally workers, but have finally become the main channels out of which diverge secondary channels, which again bifurcate into the subordinate channels, through which flows the money (representing the nutriment) supplied by society to the actual makers of the railway. Now it seems worth inquiring whether this is not the original course followed in the evolution of secreting and excreting organs in an animal. We know that such is the process by which the liver is developed. Out of the group of bile-cells forming the germ of it, some centrally-placed ones, lying next to the intestine, are transformed into ducts through which the secretion of the peripheral bile-cells is poured into the intestine; and as the peripheral bile-cells multiply, there similarly arise secondary ducts emptying themselves into the main ones; tertiary ones into these; and so on. Recent inquiries show that the like is the case with the lungs, – that the bronchial tubes are thus formed. But while analogy suggests that this is the original mode in which such organs are developed, it at the same time suggests that this does not necessarily continue to be the mode. For as we find that in the social organism, manufacturing establishments are no longer commonly developed through the series of modifications above described, but now mostly arise by the direct transformation of a number of persons into master, clerks, foremen, workers, &c.; so the approximate method of forming organs, may in some cases be replaced by a direct metamorphosis of the organic units into the destined structure, without any transitional structures being passed through. That there are organs thus formed is an ascertained fact; and the additional question which analogy suggests is, whether the direct method is substituted for the indirect method.

Such parallelisms might be multiplied. And were it possible here to show in detail the close correspondence between the two kinds of organization, our case would be seen to have abundant support. But, as it is, these few illustrations will sufficiently justify the opinion that study of organized bodies may be indirectly furthered by study of the body politic. Hints may be expected, if nothing more. And thus we venture to think that the Inductive Method, usually alone employed by most physiologists, may not only derive important assistance from the Deductive Method, but may further be supplemented by the Sociological Method.

THE NEBULAR HYPOTHESIS

[First published in The Westminster Review for July, 1858. In explanation of sundry passages, it seems needful to state that this essay was written in defence of the Nebular Hypothesis at a time when it had fallen into disrepute. Hence there are some opinions spoken of as current which are no longer current.]

Inquiring into the pedigree of an idea is not a bad means of roughly estimating its value. To have come of respectable ancestry, is prima facie evidence of worth in a belief as in a person; while to be descended from a discreditable stock is, in the one case as in the other, an unfavourable index. The analogy is not a mere fancy. Beliefs, together with those who hold them, are modified little by little in successive generations; and as the modifications which successive generations of the holders undergo do not destroy the original type, but only disguise and refine it, so the accompanying alterations of belief, however much they purify, leave behind the essence of the original belief.

Considered genealogically, the received theory respecting the creation of the Solar System is unmistakably of low origin. You may clearly trace it back to primitive mythologies. Its remotest ancestor is the doctrine that the celestial bodies are personages who originally lived on the Earth – a doctrine still held by some of the negroes Livingstone visited. Science having divested the sun and planets of their divine personalities, this old idea was succeeded by the idea which even Kepler entertained, that the planets are guided in their courses by presiding spirits: no longer themselves gods, they are still severally kept in their orbits by gods. And when gravitation came to dispense with these celestial steersmen, there was begotten a belief, less gross than its parent, but partaking of the same essential nature, that the planets were originally launched into their orbits by the Creator's hand. Evidently, though much refined, the anthropomorphism of the current hypothesis is inherited from the aboriginal anthropomorphism, which described gods as a stronger order of men.

There is an antagonist hypothesis which does not propose to honour the Unknown Power manifested in the Universe, by such titles as "The Master-Builder," or "The Great Artificer;" but which regards this Unknown Power as probably working after a method quite different from that of human mechanics. And the genealogy of this hypothesis is as high as that of the other is low. It is begotten by that ever-enlarging and ever-strengthening belief in the presence of Law, which accumulated experiences have gradually produced in the human mind. From generation to generation Science has been proving uniformities of relation among phenomena which were before thought either fortuitous or supernatural in their origin – has been showing an established order and a constant causation where ignorance had assumed irregularity and arbitrariness. Each further discovery of Law has increased the presumption that Law is everywhere conformed to. And hence, among other beliefs, has arisen the belief that the Solar System originated, not by manufacture but by evolution. Besides its abstract parentage in those grand general conceptions which Science has generated, this hypothesis has a concrete parentage of the highest character. Based as it is on the law of universal gravitation, it may claim for its remote progenitor the great thinker who established that law. It was first suggested by one who ranks high among philosophers. The man who collected evidence indicating that stars result from the aggregation of diffused matter, was the most diligent, careful, and original astronomical observer of modern times. And the world has not seen a more learned mathematician than the man who, setting out with this conception of diffused matter concentrating towards its centre of gravity, pointed out the way in which there would arise, in the course of its concentration, a balanced group of sun, planets, and satellites, like that of which the Earth is a member.

Thus, even were there but little direct evidence assignable for the Nebular Hypothesis, the probability of its truth would be strong. Its own high derivation and the low derivation of the antagonist hypothesis, would together form a weighty reason for accepting it – at any rate, provisionally. But the direct evidence assignable for the Nebular Hypothesis is by no means little. It is far greater in quantity, and more varied in kind, than is commonly supposed. Much has been said here and there on this or that class of evidences; but nowhere, so far as we know, have all the evidences been fully stated. We propose here to do something towards supplying the deficiency: believing that, joined with the a priori reasons given above, the array of a posteriori reasons will leave little doubt in the mind of any candid inquirer.

And first, let us address ourselves to those recent discoveries in stellar astronomy which have been supposed to conflict with this celebrated speculation.

When Sir William Herschel, directing his great reflector to various nebulous spots, found them resolvable into clusters of stars, he inferred, and for a time maintained, that all nebulous spots are clusters of stars exceedingly remote from us. But after years of conscientious investigation, he concluded that "there were nebulosities which are not of a starry nature;" and on this conclusion was based his hypothesis of a diffused luminous fluid which, by its eventual aggregation, produced stars. A telescopic power much exceeding that used by Herschel, has enabled Lord Rosse to resolve some of the nebulæ previously unresolved; and, returning to the conclusion which Herschel first formed on similar grounds but afterwards rejected, many astronomers have assumed that, under sufficiently high powers, every nebula would be decomposed into stars – that the irresolvability is due solely to distance. The hypothesis now commonly entertained is, that all nebulæ are galaxies more or less like in nature to that immediately surrounding us; but that they are so inconceivably remote as to look, through ordinary telescopes, like small faint spots. And not a few have drawn the corollary, that by the discoveries of Lord Rosse the Nebular Hypothesis has been disproved.

Now, even supposing that these inferences respecting the distances and natures of the nebulæ are valid, they leave the Nebular Hypothesis substantially as it was. Admitting that each of these faint spots is a sidereal system, so far removed that its countless stars give less light than one small star of our own sidereal system; the admission is in no way inconsistent with the belief that stars, and their attendant planets, have been formed by the aggregation of nebulous matter. Though, doubtless, if the existence of nebulous matter now in course of concentration be disproved, one of the evidences of the Nebular Hypothesis is destroyed, yet the remaining evidences remain. It is a tenable position that though nebular condensation is now nowhere to be seen in progress, yet it was once going on universally. And, indeed, it might be argued that the still-continued existence of diffused nebulous matter is scarcely to be expected; seeing that the causes which have resulted in the aggregation of one mass, must have been acting on all masses, and that hence the existence of masses not aggregated would be a fact calling for explanation. Thus, granting the immediate conclusions suggested by these recent disclosures of the six-feet reflector, the corollary which many have drawn is inadmissible.

But these conclusions may be successfully contested. Receiving them though we have been, for years past, as established truths, a critical examination of the facts has convinced us that they are quite unwarrantable. They involve so many manifest incongruities, that we have been astonished to find men of science entertaining them, even as probable. Let us consider these incongruities.

In the first place, mark what is inferable from the distribution of nebulæ.

"The spaces which precede or which follow simple nebulæ," says Arago, "and a fortiori, groups of nebulæ, contain generally few stars. Herschel found this rule to be invariable. Thus every time that during a short interval no star approached in virtue of the diurnal motion, to place itself in the field of his motionless telescope, he was accustomed to say to the secretary who assisted him, – 'Prepare to write; nebulæ are about to arrive.'"

How does this fact consist with the hypothesis that nebulæ are remote galaxies? If there were but one nebula, it would be a curious coincidence were this one nebula so placed in the distant regions of space, as to agree in direction with a starless spot in our own sidereal system. If there were but two nebulæ, and both were so placed, the coincidence would be excessively strange. What, then, shall we say on finding that there are thousands of nebulæ so placed? Shall we believe that in thousands of cases these far-removed galaxies happen to agree in their visible positions with the thin places in our own galaxy? Such a belief is impossible.

Still more manifest does the impossibility of it become when we consider the general distribution of nebulæ. Besides again showing itself in the fact that "the poorest regions in stars are near the richest in nebulæ," the law above specified applies to the heavens as a whole. In that zone of celestial space where stars are excessively abundant, nebulæ are rare; while in the two opposite celestial spaces that are furthest removed from this zone, nebulæ are abundant. Scarcely any nebulæ lie near the galactic circle (or plane of the Milky Way); and the great mass of them lie round the galactic poles. Can this also be mere coincidence? When to the fact that the general mass of nebulæ are antithetical in position to the general mass of stars, we add the fact that local regions of nebulæ are regions where stars are scarce, and the further fact that single nebulæ are habitually found in comparatively starless spots; does not the proof of a physical connexion become overwhelming? Should it not require an infinity of evidence to show that nebulæ are not parts of our sidereal system? Let us see whether any such infinity of evidence is assignable. Let us see whether there is even a single alleged proof which will bear examination.
<< 1 2 3 4 5 6 7 ... 18 >>
На страницу:
3 из 18