Оценить:
 Рейтинг: 0

The Principles of Biology, Volume 1 (of 2)

Год написания книги
2017
<< 1 ... 3 4 5 6 7 8 >>
На страницу:
7 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля
The essential community of nature between organic growth and inorganic growth, is, however, most clearly seen on observing that they both result in the same way. The segregation of different kinds of detritus from each other, as well as from the water carrying them, and their aggregation into distinct strata, is but an instance of a universal tendency towards the union of like units and the parting of unlike units (First Principles, § 163). The deposit of a crystal from a solution is a differentiation of the previously mixed molecules; and an integration of one class of molecules into a solid body, and the other class into a liquid solvent. Is not the growth of an organism an essentially similar process? Around a plant there exist certain elements like the elements which form its substance; and its increase of size is effected by continually integrating these surrounding like elements with itself. Nor does the animal fundamentally differ in this respect from the plant or the crystal. Its food is a portion of the environing matter that contains some compound atoms like some of the compound atoms constituting its tissues; and either through simple imbibition or through digestion, the animal eventually integrates with itself, units like those of which it is built up, and leaves behind the unlike units. To prevent misconception, it may be well to point out that growth, as here defined, must be distinguished from certain apparent and real augmentations of bulk which simulate it. Thus, the long, white potato-shoots thrown out in the dark, are produced at the expense of the substances which the tuber contains: they illustrate not the accumulation of organic matter, but simply its re-composition and re-arrangement. Certain animal-embryos, again, during their early stages, increase considerably in size without assimilating any solids from the environment; and they do this by absorbing the surrounding water. Even in the highest organisms, as in children, there appears sometimes to occur a rapid gain in dimensions which does not truly measure the added quantity of organic matter; but is in part due to changes analogous to those just named. Alterations of this kind must not be confounded with that growth, properly so called, of which we have here to treat.

The next general fact to be noted respecting organic growth, is, that it has limits. Here there appears to be a distinction between organic and inorganic growth; but this distinction is by no means definite. Though that aggregation of inanimate matter which simple attraction produces, may go on without end; yet there appears to be an end to that more definite kind of aggregation which results from polar attraction. Different elements and compounds habitually form crystals more or less unlike in their sizes; and each seems to have a size that is not usually exceeded without a tendency arising to form new crystals rather than to increase the old. On looking at the organic kingdom as a whole, we see that the limits between which growth ranges are very wide apart. At the one extreme we have monads so minute as to be rendered but imperfectly visible by microscopes of the highest power; and at the other extreme we have trees of 400 to 500 feet high and animals of 100 feet long. It is true that though in one sense this contrast may be legitimately drawn, yet in another sense it may not; since these largest organisms arise by the combination of units which are individually like the smallest. A single plant of the genus Protococcus, is of the same essential structure as one of the many cells united to form the thallus of some higher Alga, or the leaf of a phænogam. Each separate shoot of a phænogam is usually the bearer of many leaves. And a tree is an assemblage of numerous united shoots. One of these great teleophytes is thus an aggregate of aggregates of aggregates of units, which severally resemble protophytes in their sizes and structures; and a like building up is traceable throughout a considerable part of the animal kingdom. Even, however, when we bear in mind this qualification, and make our comparisons between organisms of the same degree of composition, we still find the limit of growth to have a great range. The smallest branched flowering plant is extremely insignificant by the side of a forest tree; and there is an enormous difference in bulk between the least and the greatest mammal. But on comparing members of the same species, we discover the limit of growth to be much less variable. Among the Protozoa and Protophyta, each kind has a tolerably constant adult size; and among the most complex organisms the differences between those of the same kind which have reached maturity, are usually not very great. The compound plants do, indeed, sometimes present marked contrasts between stunted and well-grown individuals; but the higher animals diverge but inconsiderably from the average standards of their species.

On surveying the facts with a view of empirically generalizing the causes of these differences, we are soon made aware that by variously combining and conflicting with one another, these causes produce great irregularities of result. It becomes manifest that no one of them can be traced to its consequences, unqualified by the rest. Hence the several statements contained in the following paragraphs must be taken as subject to mutual modification.

Let us consider first the connexion between degree of growth and complexity of structure. This connexion, being involved with many others, becomes apparent only on so averaging the comparisons as to eliminate differences among the rest. Nor does it hold at all where the conditions are radically dissimilar, as between plants and animals. But bearing in mind these qualifications, we shall see that organization has a determining influence on increase of mass. Of plants the lowest, classed as Thallophytes, usually attain no considerable size. Algæ, Fungi, and the Lichens formed by association of them count among their numbers but few bulky species: the largest, such as certain Algæ found in antarctic seas, not serving greatly to raise the average; and these gigantic seaweeds possess a considerable complexity of histological organization very markedly exceeding that of their smaller allies. Though among Bryophytes and Pteridophytes there are some, as the Tree-ferns, which attain a considerable height, the majority are but of humble growth. The Monocotyledons, including at one extreme small grasses and at the other tall palms, show us an average and a maximum greater than that reached by the Pteridophytes. And the Monocotyledons are exceeded by the Dicotyledons; among which are found the monarchs of the vegetal kingdom. Passing to animals, we meet the fact that the size attained by Vertebrata is usually much greater than the size attained by Invertebrata. Of invertebrate animals the smallest, classed as Protozoa, are also the simplest; and the largest, belonging to the Annulosa and Mollusca, are among the most complex of their respective types. Of vertebrate animals we see that the greatest are Mammals, and that though, in past epochs, there were Reptiles of vast bulks, their bulks did not equal that of the whale: the great Dinosaurs, though as long, being nothing like as massive. Between reptiles and birds, and between land-vertebrates and water-vertebrates, the relation does not hold: the conditions of existence being in these cases widely different. But among fishes as a class, and among reptiles as a class, it is observable that, speaking generally, the larger species are framed on the higher types. The critical reader, who has mentally checked these statements in passing them, has doubtless already seen that this relation is not a dependence of organization on growth but a dependence of growth on organization. The majority of Dicotyledons are smaller than some Monocotyledons; many Monocotyledons are exceeded in size by certain Pteridophytes; and even among Thallophytes, the least developed among compound plants, there are kinds of a size which many plants of the highest order do not reach. Similarly among animals. There are plenty of Crustaceans less than Actiniæ; numerous reptiles are smaller than some fish; the majority of mammals are inferior in bulk to the largest reptiles; and in the contrast between a mouse and a well-grown Medusa, we see a creature that is elevated in type of structure exceeded in mass by one that is extremely low. Clearly then, it cannot be held that high organization is habitually accompanied by great size. The proposition here illustrated is the converse one, that great size is habitually accompanied by high organization. The conspicuous facts that the largest species of both animals and vegetals belong to the highest classes, and that throughout their various sub-classes the higher usually contain the more bulky forms, show this connexion as clearly as we can expect it to be shown, amid so many modifying causes and conditions.

The relation between growth and supply of available nutriment, is too familiar a relation to need proving. There are, however, some aspects of it that must be contemplated before its implications can be fully appreciated. Among plants, which are all constantly in contact with the gaseous, liquid, and solid matters to be incorporated with their tissues, and which, in the same locality, receive not very unlike amounts of light and heat, differences in the supplies of available nutriment have but a subordinate connexion with differences of growth. Though in a cluster of herbs springing up from the seeds let fall by a parent, the greater sizes of some than of others is doubtless due to better nutrition, consequent on accidental advantages; yet no such interpretation can be given of the contrast in size between these herbs and an adjacent tree. Other conditions here come into play: one of the most important being, an absence in the one case, and presence in the other, of an ability to secrete such a quantity of ligneous fibre as will produce a stem capable of supporting a large growth. Among animals, however, which (excepting some Entozoa) differ from plants in this, that instead of bathing their surfaces the matters they subsist on are dispersed, and have to be obtained, the relation between available food and growth is shown with more regularity. The Protozoa, living on microscopic fragments of organic matter contained in the surrounding water, are unable, during their brief lives, to accumulate any considerable quantity of nutriment. Polyzoa, having for food these scarcely visible members of the animal kingdom, are, though large compared with their prey, small as measured by other standards; even when aggregated into groups of many individuals, which severally catch food for the common weal, they are often so inconspicuous as readily to be passed over by the unobservant. And if from this point upwards we survey the successive grades of animals, it becomes manifest that, in proportion as the size is great, the masses of nutriment are either large, or, what is practically the same thing, are so abundant and so grouped that large quantities may be readily taken in. Though, for example, the greatest of mammals, the arctic whale, feeds on such comparatively small creatures as the acalephes and molluscs floating in the seas it inhabits, its method of gulping in whole shoals of them and filtering away the accompanying water, enables it to secure great quantities of food. We may then with safety say that, other things equal, the growth of an animal depends on the abundance and sizes of the masses of nutriment which its powers enable it to appropriate. Perhaps it may be needful to add that, in interpreting this statement, the proportion of competitors must be taken into account. Clearly, not the absolute, but the relative, abundance of fit food is the point; and this relative abundance very much depends on the number of individuals competing for the food. Thus all who have had experience in fishing in Highland lochs, know that where the trout are numerous they are small, and that where they are comparatively large they are comparatively few.

What is the relation between growth and expenditure of energy? is a question which next presents itself. Though there is reason to believe such a relation exists, it is not very readily traced: involved as it is with so many other relations. Some contrasts, however, may be pointed out that appear to give evidence of it. Passing over the vegetal kingdom, throughout which the expenditure of force is too small to allow of such a relation being visible, let us seek in the animal kingdom, some case where classes otherwise allied, are contrasted in their locomotive activities. Let us compare birds on the one hand, with reptiles and mammals on the other. It is an accepted doctrine that birds are organized on a type closely allied to the reptilian type, but superior to it; and though in some respects the organization of birds is inferior to that of mammals, yet in other respects, as in the greater heterogeneity and integration of the skeleton, the more complex development of the respiratory system, and the higher temperature of the blood, it may be held that birds stand above mammals. Hence were growth dependent only on organization, we might infer that the limit of growth among birds should not be much short of that among mammals; and that the bird-type should admit of a larger growth than the reptile-type. Again, we see no manifest disadvantages under which birds labour in obtaining food, but from which reptiles and mammals are free. On the contrary, birds are able to get at food that is fixed beyond the reach of reptiles and mammals; and can catch food that is too swift of movement to be ordinarily caught by reptiles and mammals. Nevertheless, the limit of growth in birds falls far below that reached by reptiles and mammals. With what other contrast between these classes, is this contrast connected? May we not suspect that it is connected (partially though not wholly) with the contrast between their amounts of locomotive exertion? Whereas mammals (excepting bats, which are small), are during all their movements supported by solid surfaces or dense liquids; and whereas reptiles (excepting the ancient pterodactyles, which were not very large), are similarly restricted in their spheres of movement; the majority of birds move more or less habitually through a rare medium, in which they cannot support themselves without relatively great efforts. And this general fact may be joined with the special fact, that those members of the class Aves, as the Dinornis and Epiornis, which approached in size to the larger Mammalia and Reptilia, were creatures incapable of flight – creatures which did not expend this excess of force in locomotion. But as implied above, and as will presently be shown, another factor of importance comes into play; so that perhaps the safest evidence that there is an antagonism between the increase of bulk and the quantity of motion evolved is that supplied by the general experience, that human beings and domestic animals, when overworked while growing, are prevented from attaining the ordinary dimensions.

One other general truth concerning degrees of growth, must be set down. It is a rule, having exceptions of no great importance, that large organisms commence their separate existences as masses of organic matter more or less considerable in size, and commonly with organizations more or less advanced; and that throughout each organic sub-kingdom, there is a certain general, though irregular, relation between the initial and the final bulks. Vegetals exhibit this relation less manifestly than animals. Yet though, among the plants that begin life as minute spores, there are some which, by the aid of an intermediate form, grow to large sizes, the immense majority of them remain small. While, conversely, the great Monocotyledons and Dicotyledons, when thrown off from their parents, have already the formed organs of young plants, to which are attached stores of highly nutritive matter. That is to say, where the young plant consists merely of a centre of development, the ultimate growth is commonly insignificant; but where the growth is to become great, there exists to start with, a developed embryo and a stock of assimilable matter. Throughout the animal kingdom this relation is tolerably manifest though by no means uniform. Save among classes that escape the ordinary requirements of animal life, small germs or eggs do not in most cases give rise to bulky creatures. Where great bulk is to be reached, the young proceeds from an egg of considerable bulk, or is born of considerable bulk ready-organized and partially active. In the class Fishes, or in such of them as are subject to similar conditions of life, some proportion usually obtains between the sizes of the ova and the sizes of the adult individuals; though in the cases of the sturgeon and the tunny there are exceptions, probably determined by the circumstances of oviposition and those of juvenile life. Reptiles have eggs that are smaller in number, and relatively greater in mass, than those of fishes; and throughout this class, too, there is a general congruity between the bulk of the egg and the bulk of the adult creature. As a group, birds show us further limitations in the numbers of their eggs as well as farther increase in their relative sizes; and from the minute eggs of the humming-bird up to the immense ones of the Epiornis, holding several quarts, we see that, speaking generally, the greater the eggs the greater the birds., Finally, among mammals (omitting the marsupials) the young are born, not only of comparatively large sizes, but with advanced organizations; and throughout this sub-division of the Vertebrata, as throughout the others, there is a manifest connexion between the sizes at birth and the sizes at maturity. As having a kindred meaning, there must finally be noted the fact that the young of these highest animals, besides starting in life with bodies of considerable sizes, almost fully organized, are, during subsequent periods of greater or less length, supplied with nutriment – in birds by feeding and in mammals by suckling and afterwards by feeding. So that beyond the mass and organization directly bequeathed, a bird or mammal obtains a further large mass at but little cost to itself.

Were exhaustive treatment of the topic intended, it would be needful to give a paragraph to each of the incidental circumstances by which growth may be aided or restricted: – such facts as that an entozoon is limited by the size of the creature, or even the organ, in which it thrives; that an epizoon, though getting abundant nutriment without appreciable exertion, is restricted to that small bulk at which it escapes ready detection by the animal it infests; that sometimes, as in the weazel, smallness is a condition to successful pursuit of the animals preyed upon; and that in some cases, the advantage of resembling certain other creatures, and so deceiving enemies or prey, becomes an indirect cause of restricted size. But the present purpose is simply to set down those most general relations between growth and other organic traits, which induction leads us to. Having done this, let us go on to inquire whether these general relations can be deductively established.

§ 44. That there must exist a certain dependence of growth on organization, may be shown a priori. When we consider the phenomena of Life, either by themselves or in their relations to surrounding phenomena, we see that, other things equal, the larger the aggregate the greater is the needful complexity of structure.

In plants, even of the highest type, there is a comparatively small mutual dependence of parts: a gathered flower-bud will unfold and flourish for days if its stem be immersed in water; and a shoot cut off from its parent-tree and stuck in the ground will grow. The respective parts having vital activities that are not widely unlike, it is possible for great bulk to be reached without that structural complexity required for combining the actions of parts. Even here, however, we see that for the attainment of great bulk there requires such a degree of organization as shall co-ordinate the functions of roots and branches – we see that such a size as is reached by trees, is not possible without a vascular system enabling the remote organs to utilize each other's products. And we see that such a co-existence of large growth with comparatively low organization as occurs in some of the marine Algæ, occurs where the conditions of existence do not necessitate any considerable mutual dependence of parts – where the near approach of the plant to its medium in specific gravity precludes the need of a well-developed stem, and where all the materials of growth being derived from the water by each portion of the thallus, there requires no apparatus for transferring the crude food materials from part to part. Among animals which, with but few exceptions, are, by the conditions of their existence, required to absorb nutriment through one specialized part of the body, it is clear that there must be a means whereby other parts of the body, to be supported by this nutriment, must have it conveyed to them. It is clear that for an equally efficient maintenance of their nutrition, the parts of a large mass must have a more elaborate propelling and conducting apparatus; and that in proportion as these parts undergo greater waste, a yet higher development of the vascular system is necessitated. Similarly with the prerequisites to those mechanical motions which animals are required to perform. The parts of a mass cannot be made to move, and have their movements so co-ordinated as to produce locomotive and other actions, without certain structural arrangements; and, other things equal, a given amount of such activity requires more involved structural arrangements in a large mass than in a small one. There must at least be a co-ordinating apparatus presenting greater contrasts in its central and peripheral parts.

The qualified dependence of growth on organization, is equally implied when we study it in connexion with that adjustment of inner to outer relations which constitutes Life as phenomenally known to us. In plants this is less striking than in animals, because the adjustment of inner to outer relations does not involve conspicuous motions. Still, it is visible in the fact that the condition on which alone a plant can grow to a great size, is, that it shall, by the development of a massive trunk, present inner relations of forces fitted to counterbalance those outer relations of forces which tend continually, and others which tend occasionally, to overthrow it; and this formation of a core of regularly-arranged woody fibres is an advance in organization. Throughout the animal kingdom this connexion of phenomena is manifest. To obtain materials for growth; to avoid injuries which interfere with growth; and to escape those enemies which bring growth to a sudden end; implies in the organism the means of fitting its movements to meet numerous external co-existences and sequences – implies such various structural arrangements as shall make possible these variously-adapted actions. It cannot be questioned that, everything else remaining constant, a more complex animal, capable of adjusting its conduct to a greater number of surrounding contingencies, will be the better able to secure food and evade damage, and so to increase bulk. And evidently, without any qualification, we may say that a large animal, living under such complex conditions of existence as everywhere obtain, is not possible without comparatively high organization.

While, then, this relation is traversed and obscured by sundry other relations, it cannot but exist. Deductively we see that it must be modified, as inductively we saw that it is modified, by the circumstances amid which each kind of organism is placed, but that it is always a factor in determining the result.

§ 45. That growth is, cæteris paribus, dependent on the supply of assimilable matter, is a proposition so continually illustrated by special experience, as well as so obvious from general experience, that it would scarcely need stating, were it not requisite to notice the qualifications with which it must be taken.

The materials which each organism requires for building itself up, are not of one kind but of several kinds. As a vehicle for transferring matter through their structures, all organisms require water as well as solid constituents; and however abundant the solid constituents there can be no growth in the absence of water. Among the solids supplied, there must be a proportion ranging within certain limits. A plant round which carbonic acid, water, and ammonia exist in the right quantities, may yet be arrested in its growth by a deficiency of potassium. The total absence of lime from its food may stop the formation of a mammal's skeleton: thus dwarfing, if not eventually destroying, the mammal; and this no matter what quantities of other needful colloids and crystalloids are furnished.

Again, the truth that, other things equal, growth varies according to the supply of nutriment, has to be qualified by the condition that the supply shall not exceed the ability to appropriate it. In the vegetal kingdom, the assimilating surface being external and admitting of rapid expansion by the formation of new roots, shoots, and leaves, the effect of this limitation is not conspicuous. By artificially supplying plants with those materials which they have usually the most difficulty in obtaining, we can greatly facilitate their growth; and so can produce striking differences of size in the same species. Even here, however, the effect is confined within the limits of the ability to appropriate; since in the absence of that solar light and heat by the help of which the chief appropriation is carried on, the additional materials for growth are useless. In the animal kingdom this restriction is rigorous. The absorbent surface being, in the great majority of cases, internal; having a comparatively small area, which cannot be greatly enlarged without reconstruction of the whole body; and being in connexion with a vascular system which also must be re-constructed before any considerable increase of nutriment can be made available; it is clear that beyond a certain point, very soon reached, increase of nutriment will not cause increase of growth. On the contrary, if the quantity of food taken in is greatly beyond the digestive and absorbent power, the excess, becoming an obstacle to the regular working of the organism, may retard growth rather than advance it.

While then it is certain, a priori, that there cannot be growth in the absence of such substances as those of which an organism consists; and while it is equally certain that the amount of growth must primarily be governed by the supply of these substances; it is not less certain that extra supply will not produce extra growth, beyond a point very soon reached. Deduction shows to be necessary, as induction makes familiar, the truths that the value of food for purposes of growth depends not on the quantity of the various organizable materials it contains, but on the quantity of the material most needed; that given a right proportion of materials, the pre-existing structure of the organism limits their availability; and that the higher the structure, the sooner is this limit reached.

§ 46. But why should the growth of every organism be finally arrested? Though the rate of increase may, in each case, be necessarily restricted within a narrow range of variation – though the increment that is possible in a given time, cannot exceed a certain amount; yet why should the increments decrease and finally become insensible? Why should not all organisms, when supplied with sufficient materials, continue to grow as long as they live? To find an answer to this question we must revert to the nature and functions of organic matter.

In the first three chapters of Part I, it was shown that plants and animals mainly consist of substances in states of unstable equilibrium – substances which have been raised to this unstable equilibrium by the expenditure of the forces we know as solar radiations, and which give out these forces in other forms on falling into states of stable equilibrium. Leaving out the water, which serves as a vehicle for these materials and a medium for their changes; and excluding those mineral matters that play either passive or subsidiary parts; organisms are built up of compounds which are stores of force. Thus complex colloids and crystalloids which, as united together, form organized bodies, are the same colloids and crystalloids which give out, on their decomposition, the forces expended by organized bodies. Thus these nitrogenous and carbonaceous substances, being at once the materials for organic growth and the sources of organic energy, it results that as much of them as is used up for the genesis of energy is taken away from the means of growth, and as much as is economized by diminishing the genesis of energy, is available for growth. Given that limited quantity of nutritive matter which the pre-existing structure of an organism enables it to absorb; and it is a necessary corollary from the persistence of force, that the matter accumulated as growth cannot exceed that surplus which remains undecomposed after the production of the required amounts of sensible and insensible motion. This, which would be rigorously true under all conditions if exactly the same substances were used in exactly the same proportions for the production of force and for the formation of tissue, requires, however, to be taken with the qualification that some of the force-evolving substances are not constituents of tissue; and that thus there may be a genesis of force which is not at the expense of potential growth. But since organisms (or at least animal organisms, with which we are here chiefly concerned) have a certain power of selective absorption, which, partially in an individual and more completely in a race, adapts the proportions of the substances absorbed to the needs of the system; then if a certain habitual expenditure of force leads to a certain habitual absorption of force-evolving matters that are not available for growth; and if, were there less need for such matters, the ability to absorb matters available for growth would be increased to an equivalent extent; it follows that the antagonism described does, in the long run, hold even without this qualification. Hence, growth is substantially equivalent to the absorbed nutriment, minus the nutriment used up in action.

This, however, is no answer to the question – why has individual growth a limit? – why do the increments of growth bear decreasing ratios to the mass and finally come to an end? The question is involved. There are more causes than one why the excess of absorbed nutriment over expended nutriment must, other things equal, become less as the size of the animal becomes greater. In similarly-shaped bodies the masses, and therefore the weights, vary as the cubes of the dimensions; whereas the powers of bearing the stresses imposed by the weights vary as the squares of the dimensions. Suppose a creature which a year ago was one foot high, has now become two feet high, while it is unchanged in proportions and structure; what are the necessary concomitant changes? It is eight times as heavy; that is to say, it has to resist eight times the strain which gravitation puts upon certain of its parts; and when there occurs sudden arrest of motion or sudden genesis of motion, eight times the strain is put upon the muscles employed. Meanwhile the muscles and bones have severally increased their abilities to bear strains in proportion to the areas of their transverse sections, and hence have severally only four times the tenacity they had. This relative decrease in the power of bearing stress does not imply a relative decrease in the power of generating energy and moving the body; for in the case supposed the muscles have not only increased four times in their transverse sections but have become twice as long, and will therefore generate an amount of energy proportionate to their bulk. The implication is simply that each muscle has only half the power to withstand those shocks and strains which the creature's movements entail; and that consequently the creature must be either less able to bear these, or must have muscles and bones having relatively greater transverse dimensions: the result being that greater cost of nutrition is inevitably caused and therefore a correlative tendency to limit growth. This necessity will be seen still more clearly if we leave out the motor apparatus, and consider only the forces required and the means of supplying them. For since, in similar bodies, the areas vary as the squares of the dimensions, and the masses vary as the cubes; it follows that the absorbing surface has become four times as great, while the weight to be moved by the matter absorbed has become eight times as great. If then, a year ago, the absorbing surface could take up twice as much nutriment as was needed for expenditure, thus leaving one-half for growth, it is now able only just to meet expenditure, and can provide nothing for growth. However great the excess of assimilation over waste may be during the early life of an active organism, we see that because a series of numbers increasing as the cubes, overtakes a series increasing as the squares, even though starting from a much smaller number, there must be reached, if the organism lives long enough, a point at which the surplus assimilation is brought down to nothing – a point at which expenditure balances nutrition – a state of moving equilibrium. The only way in which the difficulty can be met is by gradual re-organization of the alimentary system; and, in the first place, this entails direct cost upon the organism, and, in the second place, indirect cost from the carrying of greater weight: both tending towards limitation. There are two other varying relations between degrees of growth and amounts of expended force; one of which conspires with the last, while the other conflicts with it. Consider, in the first place, the cost at which nutriment is distributed through the body and effete matters removed from it. Each increment of growth being added at the periphery of the organism, the force expended in the transfer of matter must increase in a rapid progression – a progression more rapid than that of the mass. But as the dynamic expense of distribution is small compared with the dynamic value of the materials distributed, this item in the calculation is unimportant. Now consider, in the second place, the changing proportion between production and loss of heat. In similar organisms the quantities of heat generated by similar actions going on throughout their substance, must increase as the masses, or as the cubes of the dimensions. Meanwhile, the surfaces from which loss of heat takes place, increase only as the squares of the dimensions. Though the loss of heat does not therefore increase only as the squares of the dimensions, it certainly increases at a smaller rate than the cubes. And to the extent that augmentation of mass results in a greater retention of heat, it effects an economization of force. This advantage is not, however, so important as at first appears. Organic heat is a concomitant of organic action, and is so abundantly produced during action that the loss of it is then usually of no consequence: indeed the loss is often not rapid enough to keep the supply from rising to an inconvenient excess. It is chiefly in respect of that maintenance of heat which is needful during quiescence, that large organisms have an advantage over small ones in this relatively diminished loss. Thus these two subsidiary relations between degrees of growth and amounts of expended force, being in antagonism, we may conclude that their differential result does not greatly modify the result of the chief relation.

Comparisons of these deductions with the facts appear in some cases to verify them and in other cases not to do so. Throughout the vegetal kingdom, there are no distinct limits to growth except those which death entails. Passing over a large proportion of plants which never exceed a comparatively small size, because they wholly or partially die down at the end of the year, and looking only at trees that annually send forth new shoots, even when their trunks are hollowed by decay; we may ask – How does growth happen here to be unlimited? The answer is, that plants are only accumulators: they are in no very appreciable degree expenders. As they do not undergo waste there is no reason why their growth should be arrested by the equilibration of assimilation and waste. Again, among animals there are sufficient reasons why the correspondence cannot be more than approximate. Besides the fact above noted, that there are other varying relations which complicate the chief one. We must bear in mind that the bodies compared are not truly similar: the proportions of trunk to limbs and trunk to head, vary considerably. The comparison is still more seriously vitiated by the inconstant ratio between the constituents of which the body is composed. In the flesh of adult mammalia, water forms from 68 to 71 per cent., organic substance from 24 to 28 per cent., and inorganic substance from 3 to 5 per cent.; whereas in the fœtal state, the water amounts to 87 per cent., and the solid organic constituents to only 11 per cent. Clearly this change from a state in which the force-evolving matter forms one-tenth of the whole, to a state in which it forms two and a half tenths, must greatly interfere with the parallelism between the actual and the theoretical progression. Yet another difficulty may come under notice. The crocodile is said to grow as long as it lives; and there appears reason to think that some predaceous fishes, such as the pike, do the same. That these animals of comparatively high organization have no definite limits of growth, is, however, an exceptional fact due to the exceptional non-fulfilment of those conditions which entail limitation. What kind of life does a crocodile lead? It is a cold-blooded, or almost cold-blooded, creature; that is, it expends very little for the maintenance of heat. It is habitually inert: not usually chasing prey but lying in wait for it; and undergoes considerable exertion only during its occasional brief contests with prey. Such other exertion as is, at intervals, needful for moving from place to place, is rendered small by the small difference between the animal's specific gravity and that of water. Thus the crocodile expends in muscular action an amount of force that is insignificant compared with the force commonly expended by land-animals. Hence its habitual assimilation is diminished much less than usual by habitual waste; and beginning with an excessive disproportion between the two, it is quite possible for the one never quite to lose its advance over the other while life continues. On looking closer into such cases as this and that of the pike, which is similarly cold-blooded, similarly lies in wait, and is similarly able to obtain larger and larger kinds of prey as it increases in size; we discover a further reason for this absence of a definite limit. To overcome gravitative force the creature has not to expend a muscular power that is large at the outset, and increases as the cubes of its dimensions: its dense medium supports it. The exceptional continuance of growth observed in creatures so circumstanced, is therefore perfectly explicable.

§ 46a. If we go back upon the conclusions set forth in the preceding section, we find that from some of them may be drawn instructive corollaries respecting the limiting sizes of creatures inhabiting different media. More especially I refer to those varying proportions between mass and stress from which, as we have seen, there results, along with increasing size, a diminishing power of mechanical self-support: a relation illustrated in its simplest form by the contrast between a dew-drop, which can retain its spheroidal form, and the spread-out mass of water which results when many dew-drops run together. The largest bird that flies (the argument excludes birds which do not fly) is the Condor, which reaches a weight of from 30 to 40 lbs. Why does there not exist a bird of the size of an elephant? Supposing its habits to be carnivorous, it would have many advantages in obtaining prey: mammals would be at its mercy. Evidently the reason is one which has been pointed out – the reason that while the weight to be raised and kept in the air by a bird increases as the cubes of its dimensions, the ability of its bones and muscles to resist the strains which flight necessitates, increases only as the squares of the dimensions. Though, could the muscles withstand any tensile strain they were subject to, the power like the weight might increase with the cubes, yet since the texture of muscle is such that beyond a certain strain it tears, it results that there is soon reached a size at which flight becomes impossible: the structures must give way. In a preceding paragraph the limit to the size of flying creatures was ascribed to the greater physiological cost of the energy required; but it seems probable that the mechanical obstacle here pointed out has a larger share in determining the limit.

In a kindred manner there results a limitation of growth in a land-animal, which does not exist for an animal living in the water. If, after comparing the agile movements of a dog with those of a cow, the great weight of which obviously prevents agility; or if, after observing the swaying flesh of an elephant as it walks along, we consider what would happen could there be formed a land-animal equal in mass to the whale (the long Dinosaurs were not proportionately massive) it needs no argument to show that such a creature could not stand, much less move about. But in the water the strain put upon its structures by the weights of its various parts is almost if not quite taken away. Probably limitation in the quantity of food obtainable becomes now the chief, if not the sole, restraint.

And here we may note, before leaving the topic, something like a converse influence which comes into play among creatures inhabiting the water. Up to the point at which muscles tear from over-strain, larger and smaller creatures otherwise alike, remain upon a par in respect of the relative amounts of energy they can evolve. Had they to encounter no resistance from their medium, the implication would be that neither would have an advantage over the other in respect of speed. But resistance of the medium comes into play; and this, other things equal, gives to the larger creature an advantage. It has been found, experimentally, that the forces to be overcome by vessels moving through the water, built as they are with immersed hinder parts which taper as fish taper, are mainly due to what is called "skin-friction." Now in two fish unlike in size but otherwise similar skin-friction bears to the energy that can be generated, a smaller proportion in the larger than in the smaller; and the larger can therefore acquire a greater velocity. Hence the reason why large fish, such as the shark, become possible. In a habitat where there is no ambush (save in exceptional cases like that of the Lophius or Angler) everything depends on speed; and if, other things equal, a larger fish had no mechanical advantage over a smaller, a larger fish could not exist – could not catch the requisite amount of prey.

§ 47. Obviously this antagonism between accumulation and expenditure, must be a leading cause of the contrasts in size between allied organisms that are in many respects similarly conditioned. The life followed by each kind of animal is one involving a certain average amount of exertion for the obtainment of a given amount of nutriment – an exertion, part of which goes to the gathering or catching of food, part to the tearing and mastication of it, and part to the after-processes requisite for separating the nutritive molecules – an exertion which therefore varies according as the food is abundant or scarce, fixed or moving, according as it is mechanically easy or difficult to deal with when secured, and according as it is, or is not, readily soluble. Hence, while among animals of the same species having the same mode of life, there will be a tolerably constant ratio between accumulation and expenditure, and therefore a tolerably constant limit of growth, there is every reason to expect that different species, following different modes of life, will have unlike ratios between accumulation and expenditure, and therefore unlike limits of growth.

Though the facts as inductively established, show a general harmony with this deduction, we cannot usually trace it in any specific way; since the conflicting and conspiring factors which affect growth are so numerous.

§ 48. One of the chief causes, if not the chief cause, of the differences between the sizes of organisms, has yet to be considered. We are introduced to it by pushing the above inquiry a little further. Small animals have been shown to possess an advantage over large ones in the greater ratio which, other things equal, assimilation bears to expenditure; and we have seen that hence small animals in becoming large ones, gradually lose that surplus of assimilative power which they had, and eventually cannot assimilate more than is required to balance waste. But how come these animals while young and small to have surplus assimilative powers? Have all animals equal surpluses of assimilative powers? And if not, how far do differences between the surpluses determine differences between the limits of growth? We shall find, in the answers to these questions, the interpretation of many marked contrasts in growth that are not due to any of the causes above assigned. For example, an ox immensely exceeds a sheep in mass. Yet the two live from generation to generation in the same fields, eat the same grass, obtain these aliments with the same small expenditure of energy, and differ scarcely at all in their degrees of organization. Whence arises, then, their striking unlikeness of bulk?

We noted when studying the phenomena of growth inductively, that organisms of the larger and higher types commence their separate existences as masses of organic matter having tolerable magnitudes. Speaking generally, we saw that throughout each organic sub-kingdom the acquirement of great bulk occurs only where the incipient bulk and organization are considerable; and that they are the more considerable in proportion to the complexity of the life which the organism is to lead.

The deductive interpretation of this induction may best be commenced by an analogy. A street orange-vendor makes but a trifling profit on each transaction; and unless more than ordinarily fortunate, he is unable to realize during the day a larger amount than will meet his wants; leaving him to start on the morrow in the same condition as before. The trade of the huxter in ounces of tea and half-pounds of sugar, is one similarly entailing much labour for small returns. Beginning with a capital of a few pounds, he cannot have a shop large enough, or goods sufficiently abundant and various, to permit an extensive business. He must be content with the half-pence and pence which he makes by little sales to poor people; and if, avoiding bad debts, he is able by strict economy to accumulate anything, it can be but a trifle. A large retail trader is obliged to lay out much money in fitting up an adequate establishment; he must invest a still greater sum in stock; and he must have a further floating capital to meet the charges that fall due before his returns come in. Setting out, however, with means enough for these purposes, he is able to make many and large sales; and so to get greater and more numerous increments of profit. Similarly, to get returns in thousands merchants and manufacturers must make their investments in tens of thousands. In brief, the rate at which a man's wealth accumulates is measured by the surplus of income over expenditure; and this, save in exceptionably favourable cases, is determined by the capital with which he begins business. Now applying the analogy, we may trace in the transactions of an organism, the same three ultimate elements. There is the expenditure required for the obtainment and digestion of food; there is the gross return in the shape of nutriment assimilated or fit for assimilation; and there is the difference between this gross return of nutriment and the nutriment that was used up in the labour of securing it – a difference which may be a profit or a loss. Clearly, however, a surplus implies that the force expended is less than the force latent in the assimilated food. Clearly, too, the increment of growth is limited to the amount of this surplus of income over expenditure; so that large growth implies both that the excess of nutrition over waste shall be relatively considerable, and that the waste and nutrition shall be on extensive scales. And clearly, the ability of an organism to expend largely and assimilate largely, so as to make a large surplus, presupposes a large physiological capital in the shape of organic matter more or less developed in its structural arrangements.

Throughout the vegetal kingdom, the illustrations of this truth are not conspicuous and regular: the obvious reason being that since plants are accumulators and in so small a degree expenders, the premises of the above argument are but very partially fulfilled. The food of plants (excepting Fungi and certain parasites) being in great measure the same for all, and bathing all so that it can be absorbed without effort, their vital processes result almost entirely in profit. Once fairly rooted in a fit place, a plant may thus from the outset add a very large proportion of its entire returns to capital; and may soon be able to carry on its processes on a large scale, though it does not at first do so. When, however, plants are expenders, namely, during their germination and first stages of growth, their degrees of growth are determined by their amounts of vital capital. It is because the young tree commences life with a ready-formed embryo and store of food sufficient to last for some time, that it is enabled to strike root and lift its head above the surrounding herbage. Throughout the animal kingdom, however, the necessity of this relation is everywhere obvious. The small carnivore preying on small herbivores, can increase in size only by small increments: its organization unfitting it to digest larger creatures, even if it can kill them, it cannot profit by amounts of nutriment exceeding a narrow limit; and its possible increments of growth being small to set out with, and rapidly decreasing, must come to an end before any considerable size is attained. Manifestly the young lion, born of tolerable bulk, suckled until much bigger, and fed until half-grown, is enabled by the power and organization which he thus gets gratis, to catch and kill animals big enough to give him the supply of nutriment needed to meet his large expenditure and yet leave a large surplus for growth. Thus, then, is explained the above-named contrast between the ox and the sheep. A calf and a lamb commence their physiological transactions on widely different scales; their first increments of growth are similarly contrasted in their amounts; and the two diminishing series of such increments end at similarly-contrasted limits.

§ 49. Such are the several conditions by which the phenomena of growth are determined. Conspiring and conflicting in endless unlike ways and degrees, they in every case qualify more or less differently each other's effects. Hence it happens that we are obliged to state each generalization as true on the average, or to make the proviso – other things equal.

Understood in this qualified form, our conclusions are these. First, that growth being an integration with the organism of such environing matters as are of like natures with the matters composing the organism, its growth is dependent on the available supply of them. Second, that the available supply of assimilable matter being the same, and other conditions not dissimilar, the degree of growth varies according to the surplus of nutrition over expenditure – a generalization which is illustrated in some of the broader contrasts between different divisions of organisms. Third, that in the same organism the surplus of nutrition over expenditure differs at different stages; and that growth is unlimited or has a definite limit, according as the surplus does or does not rapidly decrease. This proposition we found exemplified by the almost unceasing growth of organisms that expend relatively little energy; and by the definitely limited growth of organisms that expend much energy. Fourth, that among organisms which are large expenders of force, the size ultimately attained is, other things equal, determined by the initial size: in proof of which conclusion we have abundant facts, as well as the a priori necessity that the sum-totals of analogous diminishing series, must depend upon the amounts of their initial terms. Fifth, that where the likeness of other circumstances permits a comparison, the possible extent of growth depends on the degree of organization; an inference testified to by the larger forms among the various divisions and sub-divisions of organisms.

CHAPTER II.

DEVELOPMENT.[19 - In ordinary speech Development is often used as synonymous with Growth. It hence seems needful to say that Development as here and hereafter used, means increase of structure and not increase of bulk. It may be added that the word Evolution, comprehending growth as well as Development, is to be reserved for occasions when both are implied.]

§ 50. Certain general aspects of Development may be studied apart from any examination of internal structures. These fundamental contrasts between the modes of arrangement of parts, originating, as they do, the leading external distinctions among the various forms of organization, will be best dealt with at the outset. If all organisms have arisen by Evolution, it is of course not to be expected that such several modes of development can be absolutely demarcated: we are sure to find them united by transitional modes. But premising that a classification of modes can but approximately represent the facts, we shall find our general conceptions of Development aided by one.

Development is primarily central. All organic forms of which the entire history is known, set out with a symmetrical arrangement of parts round a centre. In organisms of the lowest grade no other mode of arrangement is ever definitely established; and in the highest organisms central development, though subordinate to another mode of development, continues to be habitually shown in the changes of minute structure. Let us glance at these propositions in the concrete. Practically every plant and every animal in its earliest stage is a portion of protoplasm, in the great majority of cases approximately spherical but sometimes elongated, containing a rounded body consisting of specially modified protoplasm, which is called a nucleus; and the first changes that occur in the germ thus constituted, are changes that take place in this nucleus, followed by changes round the centres produced by division of this original centre. From this type of structure, the simplest organisms do not depart; or depart in no definite or conspicuous ways. Among plants, many of the simplest Algæ and Fungi permanently maintain such a central distribution; while among animals it is permanently maintained by creatures like the Gregarina, and in a different manner by the Amœba, Actinophrys, and their allies: the irregularities which are many and great do not destroy this general relation of parts. In larger organisms, made up chiefly of units that are analogous to these simplest organisms, the formation of units ever continues to take place round nuclei; though usually the nuclei soon cease to be centrally placed.

Central development may be distinguished into unicentral and multicentral; according as the product of the original germ develops more or less symmetrically round one centre, or develops without subordination to one centre – develops, that is, in subordination to many centres. Unicentral development, as displayed not in the formation of single cells but in the formation of aggregates, is not common. The animal kingdom shows it only in some of the small group of colonial Radiolaria. It is feebly represented in the vegetal kingdom by a few members of the Volvocineæ. On the other hand, multicentral development, or development round insubordinate centres, is variously exemplified in both divisions of the organic world. It is exemplified in two distinct ways, according as the insubordination among the centres of development is partial or total. We may most conveniently consider it under the heads hence arising.

Total insubordination among the centres of development, is shown where the units or cells, as fast as they are severally formed, part company and lead independent lives. This, in the vegetal kingdom, habitually occurs among the Protophyta, and in the animal kingdom, among the Protozoa. Partial insubordination is seen in those somewhat advanced organisms, that consist of units which, though they have not separated, have so little mutual dependence that the aggregate they form is irregular. Among plants, the Thallophytes very generally exemplify this mode of development. Lichens, spreading with flat or corrugated edges in this or that direction as the conditions determine, have no manifest co-ordination of parts. In the Algæ the Nostocs and various other forms similarly show us an unsymmetrical structure. Of Fungi we may say that creeping kinds display no further dependence of one part on another than is implied by their cohesion. And even in such better-organized plants as the Marchantia, the general arrangement shows no reference to a directive centre. Among animals many of the Sponges in their adult forms may be cited as devoid of that co-ordination implied by symmetry: the units composing them, though they have some subordination to local centres, have no subordination to a general centre. To distinguish that kind of development in which the whole product of a germ coheres in one mass, from that kind of development in which it does not, Professor Huxley has introduced the words "continuous" and "discontinuous;" and these seem the best fitted for the purpose. Multicentral development, then, is divisible into continuous and discontinuous.

From central development we pass insensibly to that higher kind of development for which axial seems the most appropriate name. A tendency towards this is vaguely manifested almost everywhere. The great majority even of Protophyta and Protozoa have different longitudinal and transverse dimensions – have an obscure if not a distinct axial structure. The originally spheroidal and polyhedral units out of which higher organisms are mainly built, usually pass into shapes that are subordinated to lines rather than to points. And in the higher organisms, considered as wholes, an arrangement of parts in relation to an axis is distinct and nearly universal. We see it in the superior orders of Thallophytes; and in all the cormophytic plants. With few exceptions the Cœlenterata clearly exhibit it; it is traceable, though less conspicuously, throughout the Mollusca; and the Annelida, Arthropoda, and Vertebrata uniformly show it with perfect definiteness.

This kind of development, like the first kind, is of two orders. The whole germ-product may arrange itself round a single axis, or it may arrange itself round many axes: the structure may be uniaxial or multiaxial. Each division of the organic kingdom furnishes examples of both these orders. In such Fungi as exhibit axial development at all, we commonly see development round a single axis. Some of the Algæ, as the common tangle, show us this arrangement. And of the higher plants, many Monocotyledons and small Dicotyledons are uniaxial. Of animals, the advanced are without exception in this category. There is no known vertebrate in which the whole of the germ-product is not subordinated to a single axis. In the Arthropoda, the like is universal; as it is also in the superior orders of Mollusca. Multiaxial development occurs in most of the plants we are familiar with – every branch of a shrub or tree being an independent axis. But while in the vegetal kingdom multiaxial development prevails among the highest types, in the animal kingdom it prevails only among the lowest types. It is extremely general, if not universal, among the Cœlenterata; it is characteristic of the Polyzoa; the compound Ascidians exhibit it; and it is seen, though under another form, in certain of the inferior Annelids.

Development that is axial, like development that is central, may be either continuous or discontinuous: the parts having different axes may continue united, or they may separate. Instances of each alternative are supplied by both plants and animals. Continuous multiaxial development is that which plants usually display, and need not be illustrated further than by reference to every garden. As cases of it in animals may be named all the compound Hydrozoa and Actinozoa; and such ascidian forms as the Botryllidæ. Of multiaxial development that is discontinuous, a familiar instance among plants exists in the common strawberry. This sends out over the neighbouring surface, long slender shoots, bearing at their extremities buds that presently strike roots and become new individuals; and these by and by lose their connexions with the original axis. Other plants there are that produce certain specialized buds called bulbils, which separating themselves and falling to the ground, grow into independent plants. Among animals the fresh-water polype very clearly shows this mode of development: the young polypes, budding out from its surface, severally arrange their parts around distinct axes, and eventually detaching themselves, lead separate lives, and produce other polypes after the same fashion. By some of the lower Annelida, this multiplication of axes from an original axis, is carried on after a different manner: the string of segments spontaneously divides; and after further growth, division recurs in one or both of the halves. Moreover in the Syllis ramosa, there occurs lateral branching also.

Grouping together its several modes as above delineated, we see that

Any one well acquainted with the facts, may readily raise objections to this arrangement. He may name forms which do not obviously come under any of these heads. He may point to plants that are for a time multicentral but afterwards develop axially. And from lower types of animals he may choose many in which the continuous and discontinuous modes are both displayed. But, as already hinted, an arrangement free from such anomalies must be impossible, if the various kinds of organization have arisen by Evolution. The one above sketched out is to be regarded as a rough grouping of the facts, which helps us to a conception of them in their totality; and, so regarded, it will be of service when we come to treat of Individuality and Reproduction.

§ 51. From these most general external aspects of organic development, let us now turn to its internal and more special aspects. When treating of Evolution as a universal process of things, a rude outline of the course of structural changes in organisms was given (First Principles, §§ 110, 119, 132). Here it will be proper to describe these changes more fully.

The bud of any common flowering plant in its earliest stage, consists of a small hemispherical or sub-conical projection. While it increases most rapidly at the apex, this presently develops on one side of its base, a smaller projection of like general shape with itself. Here is the rudiment of a leaf, which presently spreads more or less round the base of the central hemisphere or main axis. At the same time that the central hemisphere rises higher, this lateral prominence, also increasing, gives rise to subordinate prominences or lobes. These are the rudiments of stipules, where the leaves are stipulated. Meanwhile, towards the other side of the main axis and somewhat higher up, another lateral prominence arising marks the origin of a second leaf. By the time that the first leaf has produced another pair of lobes, and the second leaf has produced its primary pair, the central hemisphere, still increasing at its apex, exhibits the rudiment of a third leaf. Similarly throughout. While the germ of each succeeding leaf thus arises, the germs of the previous leaves, in the order of their priority, are changing their rude nodulated shapes into flattened-out expansions; which slowly put on those sharp outlines they show when unfolded. Thus from that extremely indefinite figure, a rounded lump, giving off from time to time lateral lumps, which severally becoming symmetrically lobed gradually assume specific and involved forms, we pass little by little to that comparatively complex thing – a leaf-bearing shoot. Internally, a bud undergoes analogous changes; as witness this account: – "The general mass of thin-walled parenchymatous cells which occupies the apical region, and forms the growing point of the shoot, is covered by a single external layer of similar cells, which increase in number by the formation of new walls in one direction only, perpendicular to the surface of the shoot, and thus give rise only to the epidermis or single layer of cells covering the whole surface of the shoot. Meanwhile the general mass below grows as a whole, its constituent cells dividing in all directions. Of the new cells so formed, those removed by these processes of growth and division from the actual apex, begin, at a greater or less distance from it, to show signs of the differentiation which will ultimately lead to the formation of the various tissues enclosed by the epidermis of the shoot. First the pith, then the vascular bundles, and then the cortex of the shoot, begin to take on their special characters." Similarly with secondary structures, as the lateral buds whence leaves arise. In the, at first, unorganized mass of cells constituting the rudimentary leaf, there are formed vascular bundles which eventually become the veins of the leaf; and pari passu with these are formed the other tissues of the leaf. Nor do we fail to find an essentially parallel set of changes, when we trace the histories of the individual cells. While the tissues they compose are separating, the cells are growing step by step more unlike. Some become flat, some polyhedral, some cylindrical, some prismatic, some spindle-shaped. These develop spiral thickenings in their interiors; and those, reticulate thickenings. Here a number of cells unite together to form a tube: and there they become almost solid by the internal deposition of woody or other substance. Through such changes, too numerous and involved to be here detailed, the originally uniform cells go on diverging and rediverging until there are produced various forms that seem to have very little in common.

The arm of a man makes its first appearance in as simple a way as does the shoot of a plant. According to Bischoff, it buds-out from the side of the embryo as a little tongue-shaped projection, presenting no differences of parts; and it might serve for the rudiment of some one of the various other organs that also arise as buds. Continuing to lengthen, it presently becomes somewhat enlarged at its end; and is then described as a pedicle bearing a flattened, round-edged lump. This lump is the representative of the future hand, and the pedicle of the future arm. By and by, at the edges of this flattened lump, there appear four clefts, dividing from each other the buds of the future fingers; and the hand as a whole grows a little more distinguishable from the arm. Up to this time the pedicle has remained one continuous piece, but it now begins to show a bend at its centre, which indicates the division into arm and forearm. The distinctions thus rudely indicated gradually increase: the fingers elongate and become jointed, and the proportions of all the parts, originally very unlike those of the complete limb, slowly approximate to them. During its bud-like stage, the rudimentary arm consists only of partially-differentiated tissues. By the diverse changes these gradually undergo they are transformed into bones, muscles, blood-vessels, and nerves. The extreme softness and delicacy of these primary tissues, renders it difficult to trace the initial stages of the differentiations. In consequence of the colour of their contents, the blood-vessels are the first parts to become distinct. Afterwards the cartilaginous parts, which are the bases of the future bones, become marked out by the denser aggregation of their constituent cells, and by the production between these of a hyaline substance which unites them into a translucent mass. When first perceptible, the muscles are gelatinous, pale, yellowish, transparent, and indistinguishable from their tendons. The various other tissues of which the arm consists, beginning with very faintly-marked differences, become day by day more definite in their qualitative appearances. In like manner the units composing these tissues severally assume increasingly-specific characters. The fibres of muscle, at first made visible in the midst of their gelatinous matrix only by immersion in alcohol, grow more numerous and distinct; and by and by they begin to exhibit transverse stripes. The bone-cells put on by degrees their curious structure of branching canals. And so in their respective ways with the units of skin and the rest.

Thus in each of the organic sub-kingdoms, we see this change from an incoherent, indefinite homogeneity to a coherent, definite heterogeneity, illustrated in a quadruple way. The originally-like units called cells, become unlike in various ways, and in ways more numerous and marked as the development goes on. The several tissues which these several classes of cells form by aggregation, grow little by little distinct from each other; and little by little put on those structural complexities that arise from differentiations among their component units. In the shoot, as in the limb, the external form, originally very simple, and having much in common with simple forms in general, gradually acquires an increasing complexity, and an increasing unlikeness to other forms. Meanwhile, the remaining parts of the organism to which the shoot or limb belongs, having been severally assuming structures divergent from one another and from that of this particular shoot or limb, there has arisen a greater heterogeneity in the organism as a whole.

§ 52. One of the most remarkable inductions of embryology comes next in order. And here we find illustrated the general truth that in mental evolution as in bodily evolution the progress is from the indefinite and inexact to the definite and exact. For the first statement of this induction was but an adumbration of the correct statement.

As a result of his examinations von Baer alleged that in its earliest stage every organism has the greatest number of characters in common with all other organisms in their earliest stages; that at a stage somewhat later its structure is like the structures displayed at corresponding phases by a less extensive assemblage of organisms; that at each subsequent stage traits are acquired which successively distinguish the developing embryo from groups of embryos that it previously resembled – thus step by step diminishing the group of embryos which it still resembles; and that thus the class of similar forms is finally narrowed to the species of which it is a member. This abstract proposition will perhaps not be fully comprehended by the general reader. It will be best to re-state it in a concrete shape. Supposing the germs of all kinds of organisms to be simultaneously developing, we may say that all members of the vast multitude take their first steps in the same direction; that at the second step one-half of this vast multitude diverges from the other half, and thereafter follows a different course of development; that the immense assemblage contained in either of these divisions very soon again shows a tendency to take two or more routes of development; that each of the two or more minor assemblages thus resulting, shows for a time but small divergences among its members, but presently again divides into groups which separate ever more widely as they progress; and so on until each organism, when nearly complete, is accompanied in its further modifications only by organisms of the same species; and last of all, assumes the peculiarities which distinguish it as an individual – diverges to a slight extent to the organisms it is most like.

But, as above said, this statement is only an adumbration. The order of Nature is habitually more complex than our generalizations represent it as being – refuses to be fully expressed in simple formulæ; and we are obliged to limit them by various qualifications. It is thus here. Since von Baer's day the careful observations of numerous observers have shown his allegation to be but approximately true. Hereafter, when discussing the embryological evidence of Evolution, the causes of deviations will be discussed. For the present it suffices to recognize as unquestionable the fact that whereas the germs of organisms are extremely similar, they gradually diverge widely, in modes now regular and now irregular, until in place of a multitude of forms practically alike we finally have a multitude of forms most of which are extremely unlike. Thus, in conformity with the law of evolution, not only do the parts of each organism advance from indefinite homogeneity to definite heterogeneity, but the assemblage of all organisms does the same: a truth already indicated in First Principles.

§ 53. This comparison between the course of development, in any creature, and the course of development in all other creatures – this arrival at the conclusion that the course of development in each, at first the same as in all others, becomes stage by stage differentiated from the courses in all others, brings us within view of an allied conclusion. If we contemplate the successive stages passed through by any higher organism, and observe the relation between it and its environment at each of these stages; we shall see that this relation is modified in a way analogous to that in which the relation between the organism and its environment is modified, as we advance from the lowest to the highest grades. Along with the progressing differentiation of each organism from others, we find a progressing differentiation of it from its environment; like that progressing differentiation from the environment which we meet with in the ascending forms of life. Let us first glance at the way in which the ascending forms of life exhibit this progressing differentiation from the environment.

<< 1 ... 3 4 5 6 7 8 >>
На страницу:
7 из 8