Оценить:
 Рейтинг: 0

Прямо сейчас ваш мозг совершает подвиг. Как человек научился читать и превращать слова на бумаге в миры и смыслы

Год написания книги
2009
Теги
<< 1 2 3 4 >>
На страницу:
2 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля

Я также покажу, как нейронаучный подход может пролить свет на более загадочные особенности овладения навыком чтения. Например, почему так много детей пишут свои первые слова справа налево? Вопреки общепринятому мнению, ошибки, связанные с зеркальной инверсией, не являются первыми признаками дислексии; скорее, это естественное следствие организации нашей зрительной системы. У большинства детей дислексия связана с другой, вполне отчетливой аномалией в обработке звуков речи. Описанию симптомов дислексии, их мозговых механизмов, а также самых последних открытий, касающихся генетических основ этой патологии, посвящена глава 6. В главе 7 мы узнаем, что зеркальные ошибки могут говорить о нормальном процессе зрительного распознавания.

Наконец, в главе 8 мы вновь вернемся к тому удивительному факту, что только наш вид способен на такие сложные культурные изобретения, как чтение. Чтение – уникальный подвиг, который не под силу ни одному другому примату. Согласно стандартной социологической модели, мозг – это чистый лист, на котором культура может писать все, что ей заблагорассудится. Это не так. В действительности культура и организация мозга неразрывно связаны между собой, и чтение – убедительное тому доказательство. За свою долгую культурную историю люди убедились, что зрительную систему можно использовать в качестве суррогатного речевого входа. Так возникло чтение и письмо. Аналогичный подход применим и к другим ключевым культурным изобретениям человека. Математика, искусство, музыка, религия – все это можно рассматривать как устройства, сформированные веками культурной эволюции и захватившие наш мозг примата.

Остается последняя загадка: если учиться могут все приматы, почему Homo sapiens – единственный вид с развитой культурой? Хотя этот термин иногда применяется в отношении шимпанзе, их «культура» едва ли выходит за рамки нескольких хитроумных способов колоть орехи. Да, они моют картофель и выуживают муравьев палкой, но это ничто по сравнению со свойственным человеку беспрерывным производством взаимосвязанных условностей и систем символов, включая языки, религии, искусство, спорт, математику и медицину. Другие животные могут постепенно научиться распознавать новые знаки, такие как буквы и цифры, но они не могут их изобрести. В заключении я высказываю некоторые предварительные размышления об исключительности человеческого мозга. Уникальность нашего вида может быть обусловлена сочетанием двух факторов: теории чужого сознания (способностью понимать мысли других людей) и глобального рабочего пространства (внутренним буфером, в котором происходит объединение множества идей). Оба механизма, заложенные в наших генах, делают нас единственным культурным видом на планете. Кажущееся бесконечным разнообразие человеческих культур – лишь иллюзия. Никому из нас не под силу вырваться из замкнутого когнитивного круга: как вообще можно вообразить формы, кроме тех, что способен представить наш мозг? Хотя чтение – относительно недавнее изобретение, оно тысячелетиями дремало в ореоле потенциальных способностей, заложенных в нашем мозге. В основе внешнего многообразия человеческих систем письменности лежит базовый набор универсальных нейронных механизмов, которые, подобно водяному знаку, обнаруживают ограничения человеческой природы.

1

Как мы читаем

Существование текста – это безмолвное существование, безмолвное ровно до тех пор, пока его не прочтет читатель. Лишь после того, как знаков на табличке коснется опытный взгляд, текст пробуждается к активной жизни. Все написанное зависит исключительно от великодушия читателя.

    АЛЬБЕРТО МАНГУЭЛЬ, «ИСТОРИЯ ЧТЕНИЯ»[15 - Мангуэль А. История чтения // А. Мангуэль; пер. с англ. М. Юнгер. – Екатеринбург: У-Фактория, 2008. (Прим. ред.)]

Обработка письменной речи начинается с глаз. Только центр сетчатки – так называемая центральная ямка – имеет достаточно высокое разрешение, чтобы распознавать мелкий шрифт. Именно поэтому взгляд вынужден беспрерывно перемещаться по странице. Когда наши глаза останавливаются, мы можем различить не больше одного-двух слов. Каждое из них дробится нейронами сетчатки на множество фрагментов, а затем собирается обратно. Наша зрительная система последовательно извлекает графемы, слоги, префиксы, суффиксы и корни слов. Обработка слова осуществляется по двум параллельным маршрутам: фонологическому, который преобразует буквы в звуки речи, и лексическому, который обеспечивает доступ к ментальному словарю значений.

На первый взгляд чтение кажется почти волшебством: глаза видят слово, и мозг без труда дает нам доступ к его значению и произношению. Но не все так просто. Попадая на сетчатку, слово дробится на множество фрагментов: каждую часть зрительного образа распознает отдельный фоторецептор. Задача в том, чтобы снова собрать эти кусочки воедино, расшифровать буквы, выяснить порядок, в котором они расположены, и, наконец, идентифицировать слово.

Вот уже 30 лет специалисты по когнитивной психологии активно изучают механику чтения. Их главная цель – взломать «алгоритм» зрительного распознавания слов и выявить последовательность основных этапов его обработки. Психологи рассматривают чтение как задачу автоматизированного анализа данных. По большому счету любой читающий человек напоминает робота с двумя камерами – глазами и сетчаткой. Сначала все слова представляются в виде пятен света и тени и не могут быть интерпретированы как лингвистические знаки. Чтобы мы могли получить доступ к соответствующим звукам, словам и значениям, зрительную информацию необходимо перекодировать в другой формат. Следовательно, наш алгоритм расшифровки должен быть в чем-то похож на программу автоматического распознавания символов, которая на входе получает пиксели, а на выходе предлагает слова. Хотя мы этого не осознаем, наш мозг поступает именно таким образом: чтобы распознать слово, он производит целый ряд сложных операций по декодированию, принципы которых ученые только начинают понимать.

Глаз – плохой сканер

Чтение начинается в тот момент, когда фотоны[16 - Элементарная частица электромагнитного излучения (света). (Прим. ред.)], отраженные от страницы, попадают на сетчатку глаза. Но сетчатка не является однородным сенсором. Лишь центральная ямка (фовеа) содержит большое количество клеток с высокой разрешающей способностью и чувствительностью к свету. Для остальной сетчатки характерно более низкое разрешение. Центральная ямка занимает около 15 градусов зрительного поля и является единственным участком сетчатки, который «способен» читать. Когда фовеальная информация отсутствует, например, из-за повреждения сетчатки, инсульта, разрушившего центральную часть зрительной коры, или хитроумного эксперимента, который избирательно блокирует зрительные сигналы, поступающие в центральную ямку, чтение становится невозможным[17 - Rayner & Bertera, 1979.].

Итак, мы можем читать только те слова, которые попадают в область центральной ямки. Вот почему во время чтения наши глаза находятся в постоянном движении. Мы «сканируем» текст наиболее чувствительной частью сетчатки. Только она имеет достаточно высокое разрешение, необходимое для распознавания букв. Тем не менее наши глаза не перемещаются по странице безостановочно[18 - Rayner, 1998.]. Скорее наоборот: они движутся небольшими скачками. Эти быстрые, согласованные движения глаз называются саккадами. В этот самый момент вы совершаете четыре или пять таких резких движений в секунду. Благодаря им в вашу область фовеа поступает новая информация.

Однако даже в центральной ямке визуальная информация представлена с разной степенью четкости. В сетчатке, как и в зрительных ретрансляторах таламуса и коры, количество клеток, «закрепленных» за одним фрагментом изображения, уменьшается прямо пропорционально расстоянию от центра зрительного поля. Это приводит к постепенному снижению четкости. Острота зрения оптимальна в центре и плавно снижается к периферии. Посмотрите прямо перед собой. Вам кажется, что все видно с одинаковой четкостью, как если бы вы снимали на цифровую камеру с однородным набором пикселей? Это иллюзия. В отличие от камеры, наш глазной сенсор точно воспринимает лишь ту точку, на которую падает взгляд. Все остальное остается нечетким и расплывчатым (рис. 1.1)[19 - Sere, Marendaz, & Herault, 2000.].

Рис. 1.1. Сетчатка глаза строго фильтрует все, что мы читаем. Эта страница из журнала Сэмюэла Джонсона[20 - Сэмюэл Джонсон (1709–1784) – английский литературный критик, лексикограф и поэт эпохи Просвещения. (Прим. перев.)]The Adventurer (1754) была обработана с помощью специального алгоритма, имитирующего снижение остроты зрения от центра сетчатки к периферии. Независимо от размера, мы можем идентифицировать только те буквы, которые оказались близко к точке фиксации взгляда. Вот почему во время чтения наши глаза постоянно «прыгают» по странице, совершая быстрые, скачкообразные движения. Когда наш взгляд останавливается, мы можем различить всего одно или два слова.

Можно подумать, что в таких обстоятельствах легкость, с которой мы читаем, зависит от абсолютного размера печатных знаков: маленькие буквы сложнее читать, чем большие. Как ни странно, это не так. Причина в том, что чем крупнее знаки, тем больше места они занимают на сетчатке. Слово, напечатанное большими буквами, смещается на периферию, где клетки с трудом различают даже крупные буквы. Поскольку эти два фактора компенсируют друг друга, точность отображения на сетчатке ОГРОМНОГО и крошечного слова фактически одинакова. Конечно, это верно только при условии, что размер символов больше абсолютного минимума, соответствующего максимальной четкости в середине центральной ямки. Людям со сниженной остротой зрения, например пожилым пациентам, логично рекомендовать книги, напечатанные крупным шрифтом.

Поскольку глаз человека устроен именно таким образом, наше восприятие зависит от количества букв в словах, а не от места, которое эти слова занимают на сетчатке[21 - Morrison & Rayner, 1981; O’Regan, 1990.]. Действительно, саккады, которые совершают наши глаза при чтении, различаются по абсолютному размеру, но всегда одинаковы, если измерять их по количеству букв. Секрет в том, что при вычислении расстояния, на которое необходимо переместить взгляд, мозг учитывает размер символов. В результате наши глаза всегда сдвигаются на семь-девять букв вперед, вне зависимости от того, большие они или маленькие. Приблизительно столько информации мы можем обработать за одну зрительную фиксацию. За одну зрительную фиксацию мы можем обработать семь-девять букв.

Как же доказать, что в любой заданный момент времени мы видим лишь малую часть страницы? Джордж У. Макконки и Кит Рейнер разработали экспериментальный метод, который мне нравится называть картезианским дьяволом. В своих «Метафизических размышлениях» Рене Декарт пишет о воображаемом злом гении, который играет нашими чувствами:

Итак, я сделаю допущение, что не всеблагой Бог, источник истины, но какой-то злокозненный гений, очень могущественный и склонный к обману, приложил всю свою изобретательность к тому, чтобы ввести меня в заблуждение: я буду мнить небо, воздух, землю, цвета, очертания, звуки и все вообще внешние вещи всего лишь пригрезившимися мне ловушками, расставленными моей доверчивости усилиями этого гения; я буду рассматривать себя как существо, лишенное рук, глаз, плоти и крови, каких-либо чувств: обладание всем этим, стану я полагать, было лишь моим ложным мнением…[22 - Декарт Р. Метафизические размышления / Р. Декарт. Сочинения в 2 т. – М.: Мысль, 1994. – Т. 2. (Прим. перев.)]

Подобно суперкомпьютеру в фильме «Матрица», злой гений Декарта бомбардирует наши органы чувств искусными сигналами, создающими псевдореальность, виртуальное действо, истинная сторона которого всегда остается скрытой. Макконки и Рейнер оказались более скромными и придумали только лишь «движущееся окно», которое создает иллюзию текста на экране компьютера[23 - McConkie & Rayner, 1975.]. Специальное устройство отслеживает движения глаз испытуемого и может менять визуальный вывод в режиме реального времени. Например, его можно запрограммировать так, чтобы на экране отображались только несколько символов слева и справа от центра взгляда, а все остальные буквы на странице заменялись на х:

Как только глаза начинают двигаться, компьютер незаметно обновляет изображение. Его задача – показывать соответствующие буквы только в том месте, куда смотрит человек, а все остальные менять на x:

* Слова из преамбулы к Конституции США, которая содержит одно предложение:

«Мы, народ Соединенных Штатов, в целях образования более совершенного Союза, утверждения правосудия, обеспечения внутреннего спокойствия, организации совместной обороны, содействия общему благосостоянию и обеспечения нам и нашему потомству благ свободы, учреждаем и принимаем эту Конституцию для Соединенных Штатов Америки». (Прим. перев.)

Используя это устройство, Макконки и Рейнер сделали любопытное и вместе с тем парадоксальное открытие. Они обнаружили, что испытуемые не замечали никаких манипуляций со словами. До тех пор пока слева и справа от точки фиксации представлено достаточное количество букв, читатель не видит подвоха и считает, что смотрит на совершенно нормальный текст.

Причина этой удивительной «слепоты» проста: в точке, где одна буква сменяется другой, глаз развивает максимальную скорость. В результате обнаружить изменение букв практически невозможно: в этот самый момент все изображение на сетчатке расплывается из-за движения. Как только взгляд останавливается, текст выглядит нормально: в центральной ямке все буквы на месте. Что же касается букв на периферии зрительного поля, то они все равно не могут быть распознаны. Таким образом, эксперимент МакКонки и Рейнера убедительно доказывает, что сознательно мы обрабатываем лишь очень малое подмножество зрительных сигналов. Если компьютер оставит четыре буквы слева от точки фиксации и 15 букв справа, скорость чтения останется нормальной[24 - Rayner, Well, & Pollatsek, 1980; Rayner, Inhoff, Morrison, Slowiaczek, & Bertera, 1981. Общий обзор см. Rayner, 1998.]. Другими словами, в любой заданный момент времени мы извлекаем очень мало информации из страницы текста. Попади это оборудование в руки злокозненному гению Декарта, ему хватило бы 20 букв в каждой фиксации, чтобы заставить нас поверить, будто мы читаем Библию или Конституцию США!

На самом деле 20 букв – это преувеличение. Мы идентифицируем только 10 или 12 букв за саккаду: три-четыре слева от точки фиксации и семь-восемь справа. К остальным буквам мы практически нечувствительны и просто кодируем пробелы между словами. Эти промежутки позволяют приблизительно оценить длину слов и спланировать движения глаз таким образом, чтобы взгляд оказался как можно ближе к середине следующего слова. Специалисты продолжают спорить о том, в каком объеме мы извлекаем информацию из последующего слова – вероятно, мы распознаем только первые несколько букв. Тем не менее все согласятся с тем, что направление чтения влечет за собой асимметрию зрительного поля. Зрительное поле западного человека смещено вправо, а у носителей арабского языка или иврита, которые сканируют страницу справа налево, – влево[25 - Pollatsek, Bolozky, Well, & Rayner, 1981.]. В других системах письма, например китайской, где плотность символов больше, саккады короче, и зрительный диапазон, соответственно, меньше. Отсюда следует, что каждый человек корректирует стратегию визуального исследования с учетом конкретного языка и письменности.

С помощью этого же метода можно установить, сколько времени требуется для кодирования внешнего облика слов. Компьютер можно запрограммировать так, чтобы спустя определенное время он менял на х все буквы, включая те, что попадают в область центральной ямки. Эксперименты показывают: для обеспечения практически нормальной скорости чтения достаточно показывать слово в течение 50 миллисекунд. Разумеется, это не означает, что все операции, связанные с чтением, осуществляются за одну двадцатую долю секунды. Как мы увидим далее, мыслительные процессы продолжаются еще как минимум 500 миллисекунд после прочтения слова. Тем не менее первоначальный сбор зрительной информации может происходить очень быстро.

Вкратце, человеческий глаз накладывает множество ограничений на процесс чтения. Структура наших зрительных сенсоров заставляет нас сканировать страницу, совершая скачкообразные движения глазами каждые две-три десятых доли секунды. Чтение есть не что иное, как пословное мысленное восстановление текста с помощью серии моментальных «снимков». Хотя некоторые короткие служебные слова иногда можно пропустить, почти все значимые слова, такие как существительные и глаголы, должны быть зафиксированы хотя бы один раз.

Эти ограничения являются неотъемлемой частью нашего зрительного аппарата и не могут быть устранены посредством тренировки. Конечно, можно научить людей оптимизировать движение глаз, однако те, кто читает от 400 до 500 слов в минуту, и без того близки к максимуму. Учитывая имеющийся в нашем распоряжении ретинальный сенсор (сетчатку), едва ли стоит рассчитывать на что-то большее. Доказать, что скорость чтения ограничивается именно движениями глаз, позволяет простой эксперимент[26 - Rubin & Turano, 1992.]. При предъявлении целого предложения, которое будет возникать слово за словом в той самой точке, где сфокусирован взгляд, необходимость двигать глазами отпадает. В таких условиях опытный читатель может читать с ошеломляющей скоростью – от 1100 до 1600 слов в минуту, то есть примерно одно слово в 40 миллисекунд, что в три-четыре раза быстрее обычного! При использовании этого способа – так называемого быстрого последовательного визуального предъявления – идентификация и понимание остаются удовлетворительными, а, значит, продолжительность показа центральных элементов не накладывает серьезных ограничений на нормальное чтение. Возможно, этот компьютеризированный режим предъявления – будущее чтения в мире, где мониторы стремительно вытесняют бумагу.

В любом случае движения глаз будут неизбежно замедлять чтение до тех пор, пока текст представлен в виде страниц и строк. По этой причине ко всем методам скорочтения, которые обещают увеличить скорость до 1000 слов в минуту и больше, следует относиться скептически[27 - См. Rayner & Pollatsek, 1989, c. 440–449.]. Несомненно, мы можем немного расширить наш зрительный диапазон, чтобы уменьшить количество саккад в строке, и даже научиться избегать регрессии, когда взгляд возвращается к только что прочитанным словам. Тем не менее физиологические ограничения, свойственные нашим глазам от природы, нельзя преодолеть, если только человек не готов пропускать слова. Правда, в этом случае он рискует понять текст неправильно или не понять его вообще. Эту ситуацию прекрасно описал Вуди Аллен: «Я записался на курс скорочтения и смог прочитать «Войну и мир» за 20 минут. Там что-то про Россию».

Поиск инвариантов

КЛИТАНДР. Так ты умеешь читать?

ЛЮБЕН. Да, по печатному, а вот по писаному никак не могу научиться.

    Жан-Батист Мольер, «Жорж Данден»[28 - Мольер, Ж.-Б. Жорж Данден, или Одураченный муж. // Ж.-Б. Мольер. Собрание сочинений: в 2 т. – М.: 1957. – Т. 2. (Прим. перев.)]

Чтение ставит перед нами сложную перцептивную[29 - Перцепция – восприятие действительности органами чувств. (Прим. ред.)] задачу. Мы должны идентифицировать слова независимо от их длины и того, какими буквами они написаны – печатными или рукописными, строчными или заглавными. Психологи называют это проблемой инвариантности: прежде всего нам необходимо распознать, какой аспект слова не меняется (то есть саму последовательность букв) несмотря на множество возможных форм, которые могут принимать фактические символы.

Если перцептивная инвариантность представляет собой проблему, то это потому, что слова не всегда располагаются в одном и том же месте и не всегда напечатаны одним и тем же шрифтом одинакового размера. Будь оно так, для декодирования было бы достаточно лишь перечислить активные и неактивные клетки на сетчатке. Именно так поступает компьютер: любое черно-белое изображение определяется списком составляющих его пикселей. Однако в реальности одному и тому же слову могут соответствовать сотни различных изображений на сетчатке. Все зависит от того, как именно оно написано (рис. 1.2). Следовательно, одна из первоочередных задач при чтении – компенсировать огромное разнообразие этих поверхностных форм.

Рис 1.2. Зрительная инвариантность – одно из важнейших свойств человеческой системы чтения. Наше устройство распознавания слов удовлетворяет двум, казалось бы, противоречивым требованиям: оно пренебрегает несущественными вариациями в форме знаков, даже если они огромные, но усиливает релевантные различия, даже если они совсем крошечные. Без нашего ведома зрительная система автоматически компенсирует бесчисленные вариации в размере и шрифте. Вместе с тем она замечает малейшие изменения формы. Превращая букву «s» в букву «е» и, следовательно, «sight» («зрение») в «eight» («восемь»), один знак переориентирует цепочку обработки на абсолютно разное произношение и значение.

Сразу несколько признаков указывают на то, что наш мозг эффективно решает проблему перцептивной инвариантности. Держа газету на некотором расстоянии от глаз, мы можем прочесть и заголовки, и рекламные объявления. Хотя одни слова могут быть меньше других в 50 раз, это не оказывает особого влияния на скорость чтения. Эта задача не сильно отличается от задачи распознавания лица или объекта с расстояния одного метра или 30 – наша зрительная система терпимо относится к изменениям масштаба.

Вторая форма инвариантности позволяет нам игнорировать расположение слов на странице. Когда наш взгляд сканирует текст, центр сетчатки приходится не на середину слова, а чуть левее. Разумеется, наша меткость далека от совершенства, а потому глаза периодически останавливаются на первой или последней букве. Как ни странно, это вовсе не мешает нам распознавать слова. Мы даже можем читать их на периферии зрительного поля при условии, что крупный размер букв компенсирует снижение разрешающей способности сетчатки. Таким образом, стабильность размеров идет рука об руку с нормализацией пространственного расположения.

Наконец, распознавание слов практически не зависит от формы знаков. Сегодня программные средства обработки текстов присутствуют везде. Технология, которой раньше пользовались только лучшие типографы, стала общедоступной. Всем известно, что существует множество наборов знаков, называемых шрифтами (этот термин остался с тех времен, когда каждый знак приходилось отливать в свинце на шрифтолитейном заводе). Каждый шрифт содержит два типа знаков, или «регистров»: верхний и нижний (первоначально свинцовые отливки, или литеры, хранили в специальных ящиках с множеством отсеков – так называемых наборных кассах; в верхних ящиках обычно лежали литеры заглавных букв, а в нижних – все остальные). Наконец, мы можем выбрать «вес», или насыщенность, шрифта (обычный или жирный), наклон (курсив, первоначально изобретенный в Италии), подчеркивание, а также любую их комбинацию. Впрочем, эти выверенные опции ничтожны по сравнению с неимоверным разнообразием рукописных стилей. Рукописное письмо явно выводит нас на новый уровень изменчивости и неоднозначности.

В свете всех этих вариаций остается загадкой, как именно наша зрительная система учится классифицировать формы букв. Частично проблему инвариантности можно решить относительно простыми способами. Возьмем, например, букву «о». Благодаря уникальной замкнутой форме эта гласная легко распознается независимо от размера, регистра или шрифта. Иначе говоря, создать зрительный детектор «o» не так уж и трудно. С другими буквами ситуация обстоит сложнее. Рассмотрим букву «б». Хотя нам кажется очевидным, что знаки б, Б, б и б обозначают одну и ту же букву, тщательный анализ показывает, что эта ассоциация совершенно произвольна. С равным успехом строчной версией буквы «Б» мог стать, скажем, знак e. В результате ребенок, который только учится читать, должен запомнить, что буквы не только передают определенные звуки, но и могут принимать самые разные формы. Как мы увидим далее, умение читать, по всей вероятности, обусловлено существованием абстрактных буквенных детекторов – нейронов, способных распознавать букву в ее различных обличиях. Согласно результатам экспериментов, чтобы с нормальной скоростью ДеКоДиРоВаТь ЦеЛыЕ пРеДлОжЕнИя, БуКвЫ кОтОрЫх НаПеЧаТаНы ПоПеРеМеНнО в ВеРхНеМ и НиЖнЕм РеГиСтРе, достаточно минимальной тренировки[30 - Paap, Newsome, & Noel, 1984; Besner, 1989; Mayall, Humphreys, & Olson, 1997; Mayall, Humphreys, Mechelli, Olson, & Price, 2001.]. В «дьявольски гениальном» компьютере Макконки и Рейнера регистр может меняться перед каждой саккадой, но человек этого даже не заметит[31 - McConkie & Zola, 1979; Rayner, McConkie, & Zola, 1980.]! Хотя в повседневной жизни мы практически никогда не видим слов, напечатанных с чередованием регистров, наши процессы нормализации настолько эффективны, что зрительная система с легкостью игнорирует подобные трансформации.

Экспериментальные исследования подтверждают: внешний облик слова не играет в процессе чтения никакой роли. Если мы можем мгновенно распознать, что «слово», «СЛОВО» и «СлОвО» означает одно и то же, то это потому, что наша зрительная система не обращает внимания ни на размер, ни на регистр, которым напечатаны слова. Ее интересуют только буквы, которые их составляют. Несомненно, наша способность определять слова не зависит от анализа их общей формы.

Усиление различий

Хотя наша зрительная система успешно отфильтровывает визуальные различия, незначительные для чтения (например, между «Б» и «б»), не стоит думать, будто она всегда отбрасывает информацию и упрощает формы. Во многих случаях она, наоборот, сохраняет и даже усиливает (амплифицирует) мельчайшие детали, позволяющие отличить два очень похожих слова друг от друга. Рассмотрим слова «зрение» и «трение»[32 - Для английского языка автор приводит слова «eight» («восемь») и «sight» («зрение»). (Прим. перев.)]. Хотя разница составляет всего несколько пикселей, мы мгновенно получаем доступ к их соответствующим значениям и произношениям. Наша зрительная система чрезвычайно чувствительна к крошечным различиям между «зрением» и «трением». Усилив их, она посылает сигнал в разные семантические зоны мозга. В то же время она уделяет очень мало внимания другим, гораздо более выраженным различиям – например, между словами «зрение» и «ЗРЕНИЕ».

Как и в случае с регистром, способность обращать пристальное внимание на значимые детали является результатом многолетней тренировки. Читатель, который мгновенно замечает разницу между буквами «е» и «о» и ее отсутствие между «а» и «а», может не заметить, что еврейские буквы «» и «» кардинально отличаются друг от друга, хотя для любого еврея это очевидно.

Каждое слово – это дерево

Наша зрительная система решает проблему инвариантного распознавания слов с помощью хорошо организованной схемы обработки сигналов. Как мы увидим в главе 2, поток нейронной активности, поступающий в зрительную кору, постепенно рассортировывается на значимые категории. Слова, кажущиеся похожими (например, «зрение» и «трение»), просеиваются через ряд мельчайших фильтров, которые отделяют их друг от друга и относят к разным статьям в ментальном лексиконе – нашем внутреннем словаре всех слов, с которыми мы сталкивались в жизни. И наоборот, такие слова, как «зрение» и «ЗРЕНИЕ», изначально кодируются разными нейронами в первичной зрительной области, но постепенно перекодируются, пока не становятся практически неразличимыми. Детекторы элементарных признаков распознают сходство букв «р» и «Р». Другие, более абстрактные, детекторы классифицируют «e» и «E» как две формы одной и той же буквы. Несмотря на первоначальные различия, зрительная система в конечном счете кодирует сам смысл буквенных цепочек «зрение» и «ЗРЕНИЕ» и приписывает им один и тот же ментальный адрес – абстрактный код, ориентирующий остальную часть мозга на соответствующее произношение и значение.

Как выглядит этот адрес? Согласно некоторым моделям, он представляет собой своего рода неструктурированный список, фиксирующий последовательность букв З-Р-Е-Н-И-Е. Другие модели предполагают, что мозг опирается на абстрактный и условный код, похожий на случайный шифр: скажем, [1296] – это слово «зрение», а [3452] – это «трение». Однако современные исследования говорят в пользу другой гипотезы. Каждое написанное слово, по всей вероятности, кодируется иерархическим деревом. В нем буквы объединены в более крупные единицы, которые, в свою очередь, сгруппированы в слоги и слова. Точно так же человеческое тело можно представить в виде совокупности ног, рук, туловища и головы, состоящих из более простых частей. В мозге человека каждое написанное слово кодируется иерархическим деревом, в котором буквы объединены в более крупные единицы, а те, в свою очередь, сгруппированы в слоги и слова.

В качестве примера мысленного разложения слов на значимые единицы разберем английское слово «unbuttoning» («отстегивание», «расстегивание»). Сначала уберем приставку un- и характерный суффикс или грамматическое окончание – ing. Оба обрамляют центральный элемент – корень «button». Все три компонента называются морфемами – мельчайшими единицами, несущими некий смысл. На этом уровне каждое слово характеризуется особой комбинацией составляющих его морфем. Разбиение слова на морфемы позволяет нам понимать даже те слова, которые мы никогда раньше не видели, например «reunbutton» (буквально – «снова отстегивать»; приставка re- предполагает повтор действия) или «deglochization» (приставка de- обозначает отмену, прекращение чего-либо; значит, «deglochization» – это аннулирование действия «gloching», в чем бы оно ни заключалось). В некоторых языках, таких как турецкий или финский, морфемы могут быть сгруппированы в очень длинные слова, которые передают столько же информации, сколько целое английское предложение. В этих языках, как и в английском, разложение слова на морфемы является важным шагом на пути от визуального восприятия к смыслу.

Экспериментальные данные показывают, что наша зрительная система очень быстро и абсолютно бессознательно отсекает морфемы слов. Например, если на мониторе компьютера на мгновение высветится слово «поезд», то позже, увидев слово «отъезд»[33 - Для английского языка автор приводит пару слов «departure» («отъезд») и «depart» («уезжать»). (Прим. перев.)], вы произнесете его немного быстрее. Предъявление слова «поезд», по-видимому, заранее активирует морфему – езд, тем самым облегчая к ней доступ в будущем. В таких ситуациях психологи говорят об эффекте прайминга (предшествования) – чтение одного слова стимулирует распознавание родственных ему слов. Примечательно, что эффект прайминга зависит не только от зрительного сходства: слова, которые выглядят совершенно по-разному, но имеют общую морфему, например «мог» и «может», ускоряют распознавание друг друга, в то время как похожие, но не имеющие тесной морфологической связи, например «аспирант» и «аспирин»[34 - Для английского языка автор приводит в пример «can» («могу») – «could» («мог») и «aspire» («стремиться») – «aspirin» («аспирин»). (Прим. перев.)], – нет. Кроме того, эффект прайминга не требует сходства на уровне смысла. Такие слова, как «речь» и «речка» или «нос» и «носить»[35 - Для английского языка автор приводит 2 пары слов: «hard» («трудный») – «hardly» («едва ли»), «depart» («уезжать») – «department» («отдел», «департамент»). (Прим. перев.)], могут стимулировать друг друга, даже если их значения по существу никак не связаны[36 - Rastle, Davis, Marslen-Wilson, & Tyler, 2000; Longtin, Segui, & Hallе, 2003.]. Переход к морфемному уровню, по-видимому, имеет столь важное значение для нашей системы чтения, что она охотно строит догадки относительно морфемного состава слов. Наш считывающий аппарат разбивает слово «носить» на нос- + – ить[37 - Для английского языка автор приводит в пример разбиение слова «department» («отдел», «департамент») на depart- + ment-. (Прим. перев.)] в надежде, что это облегчит задачу операторам, вычисляющим его значение[38 - Очевидно, разложение на морфемы представляет собой систематический процесс. В случае таких слов, как «repair», его результаты могут ввести нас в заблуждение. Тем не менее пока неясно, когда именно это происходит: до или после того, как мы получаем доступ к ментальному лексикону известных слов. Обработка морфем по-прежнему активно обсуждается как на эмпирическом, так и на теоретическом уровнях. Более подробно об этом см., например, Caramazza, Laudanna, & Romani, 1988; Taft, 1994; Ferrand, 2001, гл. 5.]. Неважно, что это работает не всегда. Например, «горец» не обязательно горюет, а «лукавый» не имеет никакого отношения к растениям[39 - Для английского языка автор приводит следующие примеры: «listless» – это не тот, у кого нет списка продуктов, а «apartment» не означает, что два человека скоро будут жить раздельно. (Прим. перев.)]. Такие ошибки будут исправлены на последующих стадиях процесса анализа слова.
<< 1 2 3 4 >>
На страницу:
2 из 4