Оценить:
 Рейтинг: 0

Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в металлургии»

Год написания книги
2020
<< 1 2 3 4 5 6 7 ... 11 >>
На страницу:
3 из 11
Настройки чтения
Размер шрифта
Высота строк
Поля

. (4)

Т.е. относительная степень погрешности по потоку есть усиление, умноженное на степень погрешности открытия клапана.

На рис. 2.4. представлена соответственно рис. 2.3. кривая установочного усиления регулирующего клапана Q-ball. Из рис. 4 видно, что благодаря внутренней кривой клапана Q-ball достигается почти постоянное усиление в рабочем диапазоне регулирующего клапана. Кроме того, низкое усиление означает на практике прекрасную точность регулирования.

Рис.2.4. Кривая установленного усиления регулирующего клапана Q-ball.

Таким образом, понимая особенности процесса при протекании рабочих сред через клапан и характеристики регулирования, построенной на основе этого знания, уже на первоначальном этапе можно добиться более оптимального выбора клапана с высокими характеристиками, и соответственно его более высокой эффективности в работе.

ПОВОРОТНАЯ И ЛИНЕЙНАЯ РЕГУЛИРУЮЩАЯ АРМАТУРА

В процессах металлургического производства широкое применение находит регулирующая арматура. До сегодняшнего дня в качестве регулирующей арматуры наиболее широко используют регулирующие вентили и задвижки. Значительную часть контуров регулирования обслуживают регуляторы давления. В системах энергетики и металлургии регулирующие клапаны обслуживают различные контуры, где регулируемым параметром выступают расход, температура, давление, концентрация и т.п.

Для приведенных элементов наиболее часто основой закона регулирования является расчеты расхода по падению энергии. При этом основные решения основаны на расчете дросселирующего эффекта. В то же время современные подходы предполагают переход на расчеты по пропускной способности регулирующего органа. Это позволяет в значительной степени улучшить качество регулирования. Однако это предопределило и значительно более расчетный, предсказательный характер определения расходных характеристик потока. Расчетный характер характеристик способствовал более легкой автоматизации процесса. Таким образом, несмотря на значительно более непосредственный и простой характер расчета по эффекту дросселирования и разработки алгоритма регулирования по изменению в потерях энергии, более сложные расчетные показатели через расчет параметров расходных характеристик и пропускной способности заняли свое место в системах регулирования. Основой этой замены стало повышение качества регулирования и требование большей информативности процесса, учета множества дополнительных характеристик. Переход к информационно измерительным системам с включением в него клапана становится более отчетливым.

Регулирующие вентили, как правило, используются на линиях с ручным управлением со стабилизированным, установившимся режимом работы. Для выполнения командного сигнала вентили часто приходится делать двухседельными.

Качество регулирования до настоящего времени определяют по классу точности. На отечественных предприятиях используют классы точности 2,5; 4,0; 6,0, см. табл.2.2.

Табл. 2.2. Классы точности регулирующих клапанов

В существующих стандартах класс точности регулирующих клапанов с позиционером должен быть не ниже 2,5. Чтобы проконтролировать соответствие хода регулирующего клапана определяется значения основной погрешности, порога чувствительности и вариации хода штока. Эти параметры оцениваются по ходовой характеристике регулирующего клапана на полностью собранном и отрегулированном изделии при незаполненном средой корпусе и сальнике, обеспечивающем герметичность подвижного соединения штока при условном давлении Ру. Пневматический сигнал при этом проверяется с точностью +– 0,4% от максимального значения, перемещение – с точностью +-0,5% от номинального хода штока.

Основная погрешность регулирующего клапана определяется следующим образом. На входной штуцер мембранно-исполнительного механизма (МИМ) подают управляющий воздух под определенным давлением. Диапазон изменения управляющего давления разбивают на 8-10 равных частей и при каждом его значении фиксируют положение штока. Испытание проводят при прямом и обратном ходе; для каждого значения управляющего давления находят приведенный ход, после чего определяют разность действительного и приведенного ходов.

Основную погрешность определяют как отношение, выраженное в процентах, наибольшей разности действительного и приведенного хода к номинальному ходу штока.

?=(Sд – Sп)\Sн)х100%

Порог чувствительности определяют при значении управляющего давления, равном 20, 50 и 80% от его полного диапазона. При испытании давление плавно увеличивают до установленного значения, фиксируют его и затем плавно повышают управляющее давление до заметного трогания штока регулирующего клапана. Новое значение управляющего давления фиксируют, а затем определяют разность зафиксированных значений. Испытание повторяют при плавном уменьшении управляющего давления и определяют новую разность зафиксированных значений. Порог чувствительности определяется как отношение, выраженное в процентах изменения управляющего давления, вызывающего заметное трогание штока к диапазону управляющего давления.

Вариации хода штока (Гистерезис). При каждом значении управляющего давления находят разность между действительными значениями прямого и обратного ходов штока. Вариацию определяют как отношение, выраженное в процентах, наибольшей разности между значениями прямого и обратного ходов штока при одном и том же значении управляющего давления к номинальному ходу.

Наибольшее распространение среди регулирующих клапанов с линейным движением штока занимают регулирующие двухседельные вентили с мембранным исполнительным механизмом. Допустимый порог чувствительности таких клапанов с МИМ составляет не более 3Па. Пропускная характеристика может быть, как линейная, так и равнопроцентная. Таблица заменяемости двухседельных клапанов на поворотные шаровые регулирующие клапаны приведена ниже.

Табл. 2.3. Заменяемость двухседельных вентилей на поворотные шаровые краны

– Окончательная возможность замены определяется расчетом.

– Возможность замены угловых клапанов зависит от расчетного перепада давлений.

ПОЗИЦИОНИРОВАНИЕ РЕГУЛИРУЮЩИХ КЛАПАНОВ

Чтобы обеспечить точность выполнения командного сигнала с минимальной погрешностью клапан должен быть спозиционирован. Основной проблемой без применения позиционеров было значительное рассогласование хода штока по отношению к управляющему сигналу.

Позиционер представляет собой устройство, предназначенное для управления перемещением штока строго пропорционально командному давлению путем использования обратной связи по положению штока. Общим принципом работы позиционеров является компенсация усилия в чувствительном элементе позиционера. При этом исключается влияние сил трения, неуравновешенности штока и плунжера и сводится к минимуму рассогласование между командным давлением и действительным ходом плунжера. Если этого не проводить, то рассогласование может достичь 30%, что характерно для мембранных регулирующих вентилей. Пневматические позиционеры позволяют уменьшить рассогласование до 1,5 -2%, снижают запаздывание регулирующих клапанов, поскольку их объем во много раз меньше мембранной камеры МИМ. Основная система управления при этом была пневматическая. Каналы пневмосетей также оставались в значительной степени инерционными. Для повышения качества связи между позиционером и системой автоматического управления, начиная с 60-х годов, широко использовались системы управления, основанные на передаче электрического командного сигнала. В электропневматических позиционерах, работающих на аналоговом принципе электрическое реле переводит пневматический сигнал в электрический. Этим значительно повышаются точность позиционирования. Следующей ступенью стали позиционеры, работающие по протоколу HART, переводящие аналоговый сигнал в цифровой. При этом качество сигнала и помехоустойчивость сетей в значительной степени повысилась. После освоения протоколов HART позиционеры в последнее время появились цифровые позиционеры, например серии ND9000, основанные на преобразовании сигналов от сенсоров в цифровой.

Сам позиционер стал насыщаться сенсорами, поскольку цифровой канал связи обеспечил большие возможности для реализации, как алгоритмов регулирования, так и собственной диагностики.

Интересно отметить, что промежуточной формой внедрения позиционеров и большего перехода к цифровым системам стали цифровые позиционеры, устанавливаемые на регулирующих вентилях с линейным ходом штока и мембранным исполнительным механизмом. В дальнейшем после освоения цифрового позиционера оптимальным является замена регулирующих вентилей с линейным перемещением штока на поворотные регулирующие клапаны. Для вентилей и задвижек с диам. более 100мм требуются специальные рычажные передачи с большим количеством механических звеньев, обязательна ступенчатая регулировка передаточного отношения, поскольку только благодаря этому выходное звено арматуры с линейным ходом штока получает увеличенный ход. Из-за значительного нарастания погрешностей в связи с множеством механических передаточных звеньев, длинного хода штока переход на регулирующие поворотные клапаны с позиционерами оптимально производить с указанного диаметра.

РЕГУЛИРУЮЩИЕ ПОВОРОТНЫЕ ЗАСЛОНКИ

Заслонки регулирующие находят применение вплоть до давлений 6,4МПа, Dу 400мм и предназначаются для регулирования расхода пара при температуре не более 425

С. Их работоспособность ограничивается перепадом давлений на рабочем органе и ранее составлял не более 0,025МПа. В настоящее время при использовании заслонок с эксцентриковым смещением удается значительно повышать допустимый перепад давлений.

ЗАМЕНА РЕГУЛЯТОРОВ ДАВЛЕНИЯ

Регуляторы давления – это автоматическая арматура с линейным движением штока, с чувствительным элементом, которым выступает резиновая мембрана. Формирование силового воздействия осуществляется нагружением грузом или пружиной. Действие регулятора происходит за счет использования энергии рабочей среды, транспортируемой по трубопроводу. При изменении давления на участке трубопровода, настроенная пружина отрабатывает степень открытия регулирующего органа регулятора до тех пор, пока не восстановится исходная величина давления.

Для регуляторов используются в основном только тарельчатые двухседельные клапаны с мембранным рычажно-грузовым приводом. Этим обусловливается то, что ход штока будет незначителен. Расчетная длина хода составляет не более 0.15 диаметра отверстия в седле клапана.

Проблемой использования мембранных приводов является то, что они одновременно являются и приводом и чувствительным элементом. Поэтому их применение возможно только для малых диаметров арматуры, где погрешность движения привода близка к погрешности чувствительного элемента. Применение формованной мембраны большого диаметра нецелесообразно, поскольку такая мембрана является элементом повышенной чувствительности, и при малых изменениях давления будет приводить к резким перемещениям штока с большой амплитудой и ударам плунжера о седло. Для решения проблемы применяют малую плоскую мембрану. Однако она создает менее чувствительную систему за счет повышения жесткости. Достигаемая характеристика в большей степени может быть приближена только к пропорциональной. Однако это происходит за счет повышения неравномерности величины отрегулированного давления. Таким образом, применение регуляторов для трубопроводов крупного диаметра ограничено.

Точность работы регулятора давления характеризуется степенью неравномерности, определяемая отклонением действительной величины отрегулированного давления в процентах от номинальной настроенной. Несовпадение этих величин вызывается том, что с повышением расхода повышается отрегулированное давление в зависимости от жесткости мембраны и пружины привода. На точность работы регулирующего клапана и регулятора давления оказывает влияние и порог чувствительности, определяемый минимальной величиной изменения давления, необходимой для того, чтобы плунжер изменил свое направление на обратное. Замена регуляторов на регулирующие клапаны для целей повышения точности и управляемости режимом работы контура регулирования является актуальной задачей.

Задачами, которыми могут решить регулирующие клапаны при установке взамен регуляторов может быть уменьшение степени неравномерности действий (для регуляторов они составляют до 20% даже для диам. 50-80мм) при пороге чувствительности 0,03-0,05МПа.

БЫСТРОДЕЙСТВУЮЩАЯ АРМАТУРА

В энергетике и металлургии существует ряд контуров, где при нарушении нормального хода технологического процесса требуется быстро отключить подачу среды. Основной проблемой является необходимость выполнения жестких требований, как правило, нормируемых надзорными организациями по скорости закрытия – открытия затвора. В частности, для многих узлов быстрой и аварийной отсечки нормируются значения времени открытия-закрытия от 0,5 до 1-2 сек. К ним относятся, например, клапаны быстрой отсечки турбин, байпаса, антипомпажа, защиты в горелочном оборудовании, участки аварийной отсечки и вентилирования. В состав защитной арматуры могут входить поворотные отсечные клапаны. Ими являются, как правило, поворотные заслонки с пневмо и электроприводом. Они успешно заменяют собой отсечные клапаны с линейным движением штока с мембранным исполнительным механизмом. Основной причиной является значительно меньший ход штока при повороте по сравнению со значительной длиной хода штока при закрытии, например, при помощи задвижки или вентиля.

2.2. Критические контуры регулирования на примере ТЭС металлургического производства

Понимание, того, что не все контуры одинаковы, является важным для понимания важности замены одних клапанов более совершенными в первую очередь. Критическими контурами регулирования назовем контуры, где соотношение параметров на входе к параметру на выходе превышает критическое отношение. Небольшая погрешность регулирования на входе приводит к недопустимому превышению допусков по параметру на выходе. Рассмотрим основные контуры регулирования на примере ТЭС.

Цель работы ТЭС – отпуск теплового агента в виде пара или горячей воды с определенным параметрами расхода, температуры и обеспечение тепловодяного баланса. Дополнительными требованиями являются само качество воды, степень ее жесткости и насыщенность неконденсирующимися газами.

В работе ТЭС возникает множество возмущающих воздействий, от изменения погодных условий при работе на обогрев, до особенностей изменения работы теплопотребляющих агрегатов. Основными показателями, характеризующими технологический режим ТЭС, являются температура Т, напор Н и расход Q теплового агента. Основным оборудованием с точки зрения регулирования являются:

– котлы, иногда их может быть несколько, работающих параллельно,

– сетевые насосы, обеспечивающие циркуляцию теплового агента,

– рециркуляционные насосы в линии рециркуляции воды от выхода с котлов на их вход,

– регулирующий клапан линии перепуска, подающий воду с выхода сетевых насосов непосредственно в напорный трубопровод с предварительным смешиванием с горячей водой после котлов,

– регулирующий клапан линии рециркуляции,

– насос подпитки в линии подпитки, обеспечивающий стабильное давление в обратном трубопроводе путем восполнения потерь теплового агента за счет подачи деаэрированной воды.

–дополнительными контурами являются контуры химводоочистки и водоподготовки, деаэрирования, подачи реагентов, удаления стоков, золоудаления, мазута и др.

Основных задач регулирования – две. Это регулирование выходных параметров пара и воды для потребителей и регулирование собственного тепловодяного баланса ТЭС. Для решения первой задачи регулируются выходные параметры – Твых, Нвых, Qвых, в обратном трубопроводе Тобр, Нобр, Qобр. Для решения второй задачи регулирования и обеспечения тепловодяного баланса регулируют следующие параметры:

Qк – расход воды через включенные котлы, что обеспечивает допустимый диапазон расходов через них.
<< 1 2 3 4 5 6 7 ... 11 >>
На страницу:
3 из 11