Тенденция к потреблению большего числа калорий продлилась еще в течение последующих 20 лет. В итоге этот показатель достиг своего исторического максимума. Хотя мы по-прежнему ведем сидячий образ жизни. Ожирение подобно настоящей эпидемии распространялось настолько быстро, что власти смогли осознать масштабы бедствия только тогда, когда уже было слишком поздно.
Нация в дисбалансе
Когда человек потребляет больше калорий, чем сжигает, это приводит к нарушению энергетического баланса. Итог этой ситуации может быть только один: накапливание жира. Люди начали страдать ожирением потому, что стали потреблять больше калорий, чем им было необходимо и уже не могли оставаться стройными при существующих условиях физической активности. Проще говоря, они стали переедать.
В течение всей истории человечества, включая большую часть XX века, в США почти каждый индивид мог потреблять приблизительно столько калорий, сколько ему требовалось для поддержания жизнедеятельности, совершенно об этом не задумываясь. Но все же каким-то мистическим образом в определенный момент что-то заставило нас начать потреблять вдвое больше калорий, чем организму действительно необходимо. Какая-то сила подтолкнула людей к перееданию.
Что заставляет человека переедать? Ответив на этот вопрос, мы сможем справиться с данной проблемой. Давайте начнем искать ответ, несколько перефразировав вопрос: каким образом можно эффективно заставить нас переедать?
Хитрый способ заставить крысу переедать
Летопись изучения проблем ожирения хранит множество записей о грызунах, которые пожертвовали своей фигурой ради науки. В семидесятых годах ученые начали искать более эффективный способ откармливания крыс, чтобы всесторонне изучить проблему развития ожирения и его последствий. Раньше ученые просто добавляли жир в обычный корм для грызунов. Этот метод работал, но медленно – уходили целые месяцы на то, чтобы крыса растолстела. Изучение ожирения у грызунов превратилось в долгосрочный и дорогостоящий проект.
Однажды студент Энтони Склафани, нынешний директор Института питания и пищевого поведения в Бруклинском колледже, посадил свою подопытную крысу на лабораторный стол, где стояла кем-то оставленная миска с хлопьями «Froot Loops». Крыса подбежала к миске и от всей души ими полакомилась. Это было весьма удивительно, поскольку обычно крысы с осторожностью относятся к незнакомым продуктам. Наблюдая за тем, как крыса жадно поглощала человеческую еду, Склафани подумал, что она может быстрее приводить к ожирению, чем корм для грызунов с повышенным содержанием жира.
С целью найти быстрый и эффективный способ довести крысу до ожирения, Склафани отправился в супермаркет и купил разных магазинных «вкусностей»: конечно же, колечки «FrootLoops», сгущенное молоке с сахаром, печенья с шоколадной крошкой, салями, сыр, бананы, зефир, молочный шоколад и арахисовое масло. Склафани разложил это изобилие перед крысами, в том числе поставил привычные для них мисочки с гранулированным кормом и водой. Крысы тут же начали пожирать человеческую еду, потеряв всякий интерес к скучному грануляту. На таком рационе крысы начали прибавлять в весе с небывалой скоростью. За несколько недель у крыс развилось ожирение, при этом ни физические упражнения, ни изменения в окружающей среде не могли остановить этот процесс (хотя физические упражнения немного ослабляли темп набора веса). Склафани назвал составленный им рацион «диета из супермаркета», а сегодня большинство исследователей пользуются термином «ресторанная диета».
Склафани опубликовал свою работу в 1976 году. С тех пор ресторанная диета была и остается самым эффективным способом заставить крысу или мышь систематически переедать. С продуктами из супермаркета в этом отношении не может сравниться ни одна диета с повышенным содержанием жира или сахара.
На основании этого исследования можно сделать странный вывод. Человеческие «вкусности» из супермаркета способны заставить здоровую крысу активно переедать и накапливать лишний жир. Эффект рекордного набора веса при этом зависит не только от содержания жира или сахара в потребляемых продуктах. Если это заключение верно, то как воздействует эта пища на человеческий организм?
Хитрый способ заставить человека переедать
Эрик Равуссин сегодня руководит Научно-исследовательским центром питания и ожирения при Центре биомедицинских исследований Пеннингтона в городе Батон Руж. В начале девяностых он со своими коллегами занимались выявлением нового, более точного метода подсчета калорий и питательных веществ, потребляемых человеком. Как оказалось, они поставили перед собой нелегкую задачу. В то время по результатам ряда исследований ученые определили, что страдающие ожирением люди потребляют примерно столько же калорий, сколько и люди со здоровым весом. Исследователи поставили под вопрос роль калорий в развитии ожирения. Дело в том, что ученых ловко провели, ведь они пользовались данными, которые люди им предоставляли самостоятельно.
То есть исследователи просили людей рассказывать, что и в каких количествах они съедали и затем подсчитывали калории. У этого метода было неоспоримое достоинство: таким путем ученые могли получить реальную информацию о пищевых предпочтениях населения.
Но у метода также был и серьезный недостаток, который проявился несколько позже, когда ученые решили прибегнуть к более точному подсчету потребляемых калорий. На этот раз эксперименты показали, что люди с избыточным весом съедают больше калорий, чем люди со стройной фигурой. В своих расчетах ученые принимали во внимание рост, пол и уровень физической активности. (Как я говорил ранее, люди, страдающие ожирением, вынуждены потреблять больше калорий, чтобы поддерживать в стабильном состоянии массу своего тела). Из этого следует, что данные о количестве потребляемой пищи, полученные непосредственно от испытуемых, вводили экспериментаторов в заблуждение. Сегодня, имея многочисленные доказательства, мы можем объяснить причину этого несоответствия: люди не в состоянии правдиво описать что, а главное, сколько ими было съедено. Равуссин знал, что не сможет положиться на этот метод, так как его интересовали только проверенные данные.
В то время существовал более строгий подход к проведению подобного эксперимента. Людей закрывали в специальном лабораторном помещении, метаболической палате, и кормили по тщательно разработанной диете. Исследователи имели возможность оценивать и описывать каждую крошечку пищи. Таким образом, результаты эксперимента были предельно точными, однако сам подход был совершенно неестественным. Людям нельзя было самостоятельно выбирать еду, поэтому их реальное пищевое поведение невозможно было пронаблюдать. Этот метод расчета был очень надежным, но оторванным от действительности.
Равуссин и его коллеги стремились разработать некий средний подход. Он должен был сочетать в себе точность метаболической палаты и при этом давать людям возможность самостоятельно выбирать себе пищу, к которой привыкли в реальной жизни. Исследователи нашли решение: они установили в метаболической палате огромные продуктовые автоматы.
Автоматы предлагали большой выбор основных блюд, закусок и напитков. Набор продуктов в автоматах был не случайным. «После наблюдений за людьми мы выяснили, что они любят, а что – нет, – объяснил Равуссин, – поэтому мы загрузили в автоматы только заманчивые и аппетитные продукты». В меню были французские тосты, колбаски в сиропе, пирог с курятиной и овощами, шоколадно-ванильный пудинг, чизкейк, чипсы начос, шоколадные конфеты, газировка и яблоки в роли «здоровой» пищи (к сожалению, колечек FrootLoops не было), то есть людям предлагали в основном магазинную «вкуснятину». Ранее Склафани то же самое предлагал своим подопытным грызунам. Исследователи закрыли 10 добровольцев мужского пола в помещении с продуктовыми автоматами на семь дней и разрешили им брать из них любую пищу в любое время. Чтобы ученые могли фиксировать данные, испытуемый должен был вводить личный номер прежде чем получить пищу и сдавать все недоеденные остатки персоналу.
Эксперимент прошел успешно. Равуссин и его коллеги провели точный подсчет потребляемой пищи, получили необходимую информацию о ходе метаболических процессов, при этом испытуемые составляли свой рацион самостоятельно. В ходе эксперимента Равуссин сразу же подметил одну важную деталь: испытуемые усиленно переедали. «В среднем люди съедали в два раза больше, чем им на самом деле требовалось», – вспоминает ученый. Если быть точным, то добровольцы потребляли 173 процента калорий от суточной нормы. Они начали переедать в первый же день и продолжали в том же духе до конца эксперимента. За семь дней все мужчины поправились на два с половиной килограмма.
В течение трех последующих лет Равуссин опубликовал еще две исследовательские работы на тему «ресторанной диеты». Он и его коллеги закрывали в палате с продуктовыми автоматами мужчин и женщин, стройных и полных, людей европейской наружности и коренных американцев. Во всех случаях наличие бесплатной и вкусной пищи действовало на испытуемых одинаково – они основательно переедали, хотя экспериментаторы не ставили добровольцам такого условия. Равуссин назвал этот феномен «оппортунистическая прожорливость».
Результаты его исследований примечательны также тем, что в обычных условиях человека тяжело заставить систематически переедать несколько дней подряд (представьте, что за каждый прием пищи вам нужно было бы съедать в два раза больше!) В ходе других экспериментов ученые дополнительно стимулировали у испытуемых желание переедать, предлагая им деньги, но и при таком условии добровольцы еле-еле заставляли себя принимать дополнительную пищу. Они превозмогали растущее чувство тошноты, опасаясь разрыва желудка. А испытуемые Равуссина радостно и с удовольствием переедали, хотя их об этом никто не просил. Создается впечатление, что ученому удалось создать особую атмосферу, при которой естественные границы сытости оказались разрушены.
Добро пожаловать в мозг
Ютала набрал лишний вес, когда покинул родной остров Китава, изменив свой традиционный рацион и образ жизни. Точно так же располнели и американцы после того, как их стиль жизни претерпел изменения. Наша привычная пищевая среда сегодня очень напоминает меню из экспериментов Склафани и Равуссина. Чтобы понять, почему мы переедаем, находясь в подобной среде, и почему объедаемся, не имея на то сознательного намерения, мы должны изучить орган, который контролирует наше поведение, в том числе пищевое, – головной мозг.
2
Проблема выбора
Стен Гриллнер, исследователь из Каролинского института в Стокгольме, в помещении под своей лабораторией завел аквариум с целой стаей нетривиальных обитателей. Это были длинные, похожие на полуметровых червей создания с жадными круглыми ртами-присосками, внутри которых видны острые как бритва зубы – миноги. Они являются нашими очень далекими родственниками (рис. 6). Миноги и родственные им миксины считаются самыми примитивными представителями ныне живущих позвоночных, животных, которые в ходе эволюции развили у себя позвоночный столб, спинной и головной мозг.[16 - Технически у миног нет позвоночного столба, но есть спинной и головной мозг. Предполагается, что ранее у миног был позвоночник, но они утратили его в процессе эволюции.] Предки миног отделились от нашего общего предка примерно 560 миллионов лет назад. Это произошло до эволюции млекопитающих, динозавров, рептилий, амфибий и рыб. И задолго то того момента, когда наши предки впервые ступили плавником на твердую почву.
Рис. 6. Речная минога, Lampetrafluviatilis, и ее мозг.
Миноги являются нашими самыми дальними родственниками. Если сравнить мозг миноги и млекопитающих, то можно обнаружить общие для всех позвоночных животных принципы строения и элементы – ключевые нервные соединения, которые также лежат в основе человеческого мозга. Исследования Гриллнера доказывают, что внутри крошечного, размером с горошину, мозга примитивных животных находится зачаток человеческого аналитического аппарата.[17 - Невероятно, но зачатки базальных ганглиев, скорее всего, уже были у предшественников беспозвоночных животных. Ученые обнаружили похожие структуры у мух. Наши предки пользуются мозгом для принятия решений с самых древних времен.]
Если мы хотим постичь собственное пищевое поведение, то нам придется изучить функции мозга, которые участвуют в процессе принятия решений. И лучше всего начать с мозга миноги.
Проблема выбора: как осуществляется принятие решений в сложных условиях
Представьте себе двух роботов, которые стоят на сборочном автомобильном конвейере. Как только мимо робота 1 проезжает дверь, он окрашивает ее в зеленый цвет. За этой дверью следует другая, а робот 1 все продолжает делать одну и ту же работу. Он может выполнять только одно-единственное действие. Робот 1 не потребляет большого количества энергии, потому что выполняет одну задачу, обладает всего одной функцией и ему не нужно принимать решений. Теперь представьте робота 2, который может выполнять два действия: может окрашивать дверь в зеленый цвет или в красный. У робота 2 есть только одна форсунка для краски, и он не может пользоваться двумя цветами одновременно. Поэтому он должен решать, какой краской воспользоваться. Но как робот 2 принимает решение? Эта фундаментальная задача называется проблемой выбора. Она возникает всякий раз, когда несколько опций (зеленая и красная краска) претендуют на один и тот же общий ресурс, иначе говоря, средство выражения (одна форсунка). Чтобы разрешить проблему выбора, роботу 2 нужен селектор – некая функция, которая помогает определить, какой цвет краски выбрать для конкретной двери.
Наши самые древние предки были скорее похожи на робота 1 – простые существа, которым не нужно было решать, что делать. Но так продолжалось недолго. Как только они развили у себя способность выполнять более чем одну функцию, сохранив тот же набор ресурсов и средств выражения, им пришлось начать принимать решения. Те особи, которые принимали наилучшие решения, могли передать свои гены следующим поколениям.[18 - Ранние «решения» принимались без участия нейронов и мозга, точно так же сегодня бактерии в состоянии сделать простой выбор. Например, бактерия может двигаться к источнику пищи и прочь – от вредоносных химикатов. Такое поведение называется хемотаксис. Бактерии могут «решить», в каком направлении двигаться на основе информации о состоянии окружающей среды.] Например, миноги могут исполнять несколько разных действий: закрепляться на камне, преследовать добычу, скрываться от хищников, спариваться, давать потомство и плавать в различных направлениях. Многие из этих действий являются взаимоисключающими, потому что для их осуществления требуются одни и те же мышцы. Поэтому минога подобно роботу 2 сталкивается с проблемой выбора и, чтобы ее решить, ей нужен сортирующий аппарат, или селектор.
Согласно мнению специалистов в области вычислительной неврологии и развития искусственного интеллекта эффективный селектор, находящийся в компьютере или в головном мозге, должен обладать определенным набором ключевых параметров.
1. Селектор должен выбирать только одну опцию. При наличии несовместимых опций, таких как «скрыться от преследователя» и «спариваться» селектор должен выбрать одну функцию и позволить соответствующим ресурсам (органам) выполнить заданную программу.
2. Селектор должен выбирать ту опцию, которая подходит для текущей ситуации наилучшим образом. Например, если минога видит опасного хищника, она должна скрыться от него.[19 - Для взрослой миноги пища означает рыбу, к которой она может прикрепиться и паразитировать. Своими острыми зубами она отгрызает от хозяина часть плоти, что часто приводит к преждевременной гибели рыбы. Я же говорил, что они просто кошмарные!] Минога, которая попытается начать спаривание с опасным хищником, не сможет передать свои гены следующему поколению миног.
3. Селектор должен окончательно выбирать одну из опций. Если одна опция только немного лучше, чем другая, она все равно должна быть выбрана с полной определенностью.
Остальные несовместимые опции должны быть полностью исключены. Минога, которая одновременно пытается спариться и скрыться от преследователя, скорее всего, не оставит после себя многочисленного потомства.
В 1999 году исследователи из Шеффилдского университета опубликовали фундаментальную научную работу. На основе заключений специалистов и данных компьютерного моделирования ученые доказали, что функция осуществления выбора зависит от группы древних структур – базальных ганглиев, расположенных глубоко в человеческом мозге. Сегодня эту идею разделяют большинство неврологов. Чтобы разобраться в работе человеческого селектора, начнем с его упрощенной версии и рассмотрим селектор миноги.
Как миноги решают проблему выбора
Как минога решает, что ей делать? В глубине базальных ганглиев находится стриатум (полосатое тело) – структура, которая отвечает за прием входящих сигналов из других частей мозга.[20 - Стриатум разделяется на два участка: дорсальный (верхний) стриатум и вентральный (нижний) стриатум. Иначе эту область еще называют прилежащее ядро мозга. Они исполняют разные роли в процессе осуществления выбора. Ниже мы обсудим это подробнее.] Стриатум получает «заявки» от других участков мозга, каждая из которых представляет собой запрос на определенное действие. Так, например, один участок мозга миноги нашептывает стриатуму: «Спариваться», а другой кричит: «Скрываться от хищника!» и тому подобное. Было бы очень нехорошо, если бы все это происходило одновременно, потому что минога не в состоянии выполнять несколько функций сразу. Чтобы воспрепятствовать одновременной активации всех функций, сигналы от разных участков мозга контролируются мощными ингибиторными связями в базальных ганглиях.[21 - Бледный шар и черное вещество.] Это означает, что базальные ганглии по умолчанию держат все поведенческие функции в отключенном состоянии. Только когда выбор осуществляется в пользу определенной «заявки», базальные ганглии снимают свой строгий ингибиторный контроль и позволяют действию осуществиться (рис. 7), т. е. работают как вышибалы, которые решают, какие функции получат доступ к мышечному аппарату, а какие будут отброшены.
Таким образом себя проявляет первый ключевой параметр селектора: он должен выбрать одну опцию и дать ей доступ к мышечному аппарату.
Большинство заявок на действие поступает из определенного участка мозга миноги, который носит название паллиум, или мантия мозга, и отвечает за планирование. Каждый маленький участок паллиума руководит конкретным вариантом поведения: преследование добычи, прикрепление к камню или бегство от хищника.
Рис. 7. Типовая модель работы базальных ганглиев при осуществлении выбора. (Тенденции развития неврологии. МакХафии и соавт. 28 (2005). – 401).
Участки паллиума выполняют две основные функции. Первая заключается в получении разрешения от базальных ганглиев и исполнении того варианта поведения, на котором специализируется конкретный участок. Например, участок «преследовать добычу» активирует информационный канал, который приводит в действие мускулатуру в таком порядке, какой необходим животному для поимки добычи.
Вторая функция паллиума позволяет собирать необходимую информацию об окружающей обстановке и внутреннем состоянии миноги. На основе полученных данных участок паллиума определяет интенсивность сигнала, который он собирается направить в стриатум[22 - Интенсивность сигнала зависит от силы нервного импульса. «В мозге оценке подвергается волна возбуждения, которая распространяется по нервному волокну», – Маркус Стефенсон-Джонс, выпускник школы Гриллнера.] (см. рис. 7). Например, если рядом с миногой возникнет хищник, то участок «скрыться от хищника» направит настойчивый запрос в стриатум, в то время как область «вывести потомство» будет посылать слабый сигнал. Если минога голодна и видит добычу, то сигнал «преследовать добычу» будет ярче, чем сигнал «закрепиться на камне».
Каждый маленький участок паллиума стремится реализовать то поведение, за которое он отвечает, и они как бы соревнуются между собой за первенство, так как одновременное выполнение действий не представляется возможным. Интенсивность запроса, исходящего от паллиума, говорит о релевантности какого-то одного типа поведения на текущий момент времени. И в этой ситуации задача стриатума проста: удовлетворить самый настойчивый запрос. Таким образом реализовывается второй ключевой параметр селектора – выбор той опции поведения, которая подходит для текущей ситуации наилучшим образом.
В то же мгновение, когда стриатум отвечает на самый интенсивный сигнал, он отвергает остальные конкурирующие запросы. Таким образом, как только запрос «скрыться от хищника» получает одобрение, другие варианты поведения, например «закрепиться на камне» или «преследовать добычу», немедленно отвергаются. В этом заключается третий ключевой параметр селектора – окончательно принять решение в пользу одной опции, отвергнув все остальные.
Каждый участок паллиума связан с определенной частью стриатума. Паллиум посылает сигнал в стриатум, и затем сигнал из стриатума (через другие части базальных ганглиев) возвращается назад в тот же участок паллиума.
Иными словами, определенный участок паллиума и стриатум связаны замкнутой цепью, которая реализует запрос на конкретное действие (см. рис. 7). Например, существует цепь для преследования добычи, для ускользания от хищника, для прикрепления к камню и так далее. Каждый отдельный участок паллиума без конца нашептывает стриатуму, упрашивая дать добро на исполнение того или иного поведенческого шаблона. А стриатум по умолчанию отвечает на это «нет!» При особых обстоятельствах шепот паллиума превращается в крик, и тогда стриатум исполняет требования настойчивого паллиума и приводит в действие мышцы. Таким образом, минога способна адекватно реагировать на окружающую обстановку с учетом своего внутреннего состояния.[23 - Примечательно, что базальные ганглии осуществляют свою работу тем же способом, который нашел свое отражение в технических системах, разработанных инженерами. Здесь конкурирующие опции сравниваются, чтобы система могла принять оптимальное решение при сложных условиях. Можно говорить об универсальности стратегии осуществления выбора, основанной на конкуренции имеющихся шаблонов.]
Принимая во внимание все вышесказанное, нам стоит воспринимать отдельные участки паллиума как генераторы сигналов, которые предлагают разные варианты поведения. Каждый отдельный генератор сигналов все время находится в противостоянии с остальными, несовместимыми с ним генераторами. В одно и то же время они пытаются получить доступ к мышцам.