Оценить:
 Рейтинг: 0

Будущее быстрее, чем вы думаете. Как технологии меняют бизнес, промышленность и нашу жизнь

Серия
Год написания книги
2020
Теги
<< 1 2 3 4 5 >>
На страницу:
2 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля
 – достаточно маленькую, чтобы уместиться на крыше небоскреба или многоэтажного гаража старой постройки.

Когда все это срастется, году примерно к 2027-му, мы сможем заказывать воздушный райдшеринг (добираться в нужное место с воздушной попуткой) так же легко, как сегодня заказываем такси Uber. А к 2030 г. городская авиация может стать главным способом перемещения из пункта А в пункт Б.

Но все это ставит перед нами главный вопрос: почему именно сейчас? Почему именно в конце весны 2018 г. летающие автомобили вдруг стали решением для пикового трафика? Что же необычного приключилось в этот достославный момент, чтобы давняя мечта фантастов о летающих автомобилях вдруг вторглась в нашу реальность?

В конце концов, разве мы, люди, не мечтали почти тысячу лет о парящих в воздухе автомобилях, как в «Бегущем по лезвию бритвы», и о машине времени с полетным модулем DeLorean DMC-12, как в фильме «Назад в будущее»? Мечты передвигаться по воздуху[16 - В ранних индуистских текстах мифические, летающие по воздуху колесницы назывались виманами. См.: en.wikipedia.org/wiki/Vimana (http://en.wikipedia.org/wiki/Vimana).] восходят еще к упоминаемым в древнем индуистском источнике XI в. «Рамаяна» «воздушным колесницам». Даже их более близкие нам по времени инкарнации[17 - Котлер С. Мир завтра. Как технологии изменят жизнь каждого из нас. Мн.: Попурри, 2016.] – а именно сконструированные на основе двигателя внутреннего сгорания – некоторое время будоражили умы. К ним относятся автоплан – Curtiss Autoplane 1917 г., бесхвостый двухместный стрелобиль Arrowbile 1937 г., аэрофибия 1946 г. Airphibian – список можно продолжать. В США зарегистрировано более сотни разнообразных патентов на «гибридный летательный аппарат». Лишь очень немногие успели полетать. Большинство – нет. И ни один не выполнил обещания, прозвучавшего в научно-фантастическом мультипликационном ситкоме 1960-х «Джетсоны», действие которого происходит в 2060-х гг.

По большому счету наша досада из-за несбывшейся фантазии уже выглядит карикатурно. Чуть более 20 лет назад в знаменитом теперь рекламном ролике IBM комик Эвери Брукс пафосно вопрошал: «Настал 2000 год, и где, скажите на милость, эти ваши летающие автомобили? Мне же обещали летающие автомобили. Но их что-то не видно. Почему?!» В 2011 г. обеспокоенность по этому поводу подхватил в программной статье «Что случилось с будущим?» инвестор Питер Тиль: «Мы мечтали о летающих автомобилях, а взамен нам подсунули 140 твиттерных знаков».

И все же нашему долгому ожиданию пришел конец. Летающие. Автомобили. Появились. А теперь шустро подтягивается и инфраструктура. Пока мы попивали латте и лениво просматривали свои инстаграмы, научная фантастика превратилась в научный факт. Что отсылает нас к нашему первоначальному главному вопросу: «Почему именно сейчас?»

Ответ прост, всего одно слово: «конвергенция».

Конвергентные технологии

Если хотите разобраться, что такое конвергенция, полезно начать с азов. В наших предыдущих книгах «Изобилие» и «Без тормозов» мы ввели понятие экспоненциально ускоряющейся технологии, понимая под ней всякую технологию, которая через регулярные промежутки времени удваивает свои возможности и при этом теряет в цене. Классический пример – Закон Мура[18 - См.: intel.com/content/www/us/en/silicon-innovations/moores-law-technology.html (http://intel.com/content/www/us/en/silicon-innovations/moores-law-technology.html).]. В 1965 г. основатель Intel Гордон Мур обратил внимание, что число помещающихся на интегральной схеме транзисторов каждые 18 месяцев удваивается[19 - В оригинальной формулировке the number of transistors in a dense integrated circuit (IC) doubles about every two years речь шла о 24 месяцах. Прим. науч. ред.]. А это означало, что каждые полтора года компьютеры удваивают свою мощность, не увеличивая при этом энергопотребления.

Мур счел, что это изумительно. Он спрогнозировал, что такая тенденция продержится еще несколько лет, может, пять, а то и все десять. А продержалась она и 20 лет, и 40, а собирается и все 60. Именно Закон Мура объясняет, почему смартфон в вашем кармане в тысячу раз меньше, в тысячу раз дешевле и в тысячу раз мощнее суперкомпьютера родом из 1970-х.

Причем тренд не замедляется.

Несмотря на все сообщения о близкой «тепловой смерти» Закона Мура – о чем мы подробнее поговорим в следующей главе, – в 2023 г. средненький тысячедолларовый ноутбук приобретет такую же вычислительную мощность, как у человеческого мозга[20 - Kurzweil R. How to Create a Mind. Viking, 2012. Pp. 179–198.] (около 10

операций в секунду). А еще через 25 лет, если закон продолжит работать, тот же средней руки аппарат сравняется по вычислительной мощности с совокупной мыслительной мощью мозгов всего живущего человечества.

Но что еще важнее, не одни только интегральные схемы прогрессируют такими темпами. В 1990-х гг. технический директор Google и партнер Питера, сооснователь Университета сингулярности Рэй Курцвейл заметил, что стоит технологии стать цифровой – в смысле возможности программировать ее при помощи единиц и нулей компьютерного кода, – как она вспрыгивает на закон Мура и начинает экспоненциально ускоряться.

Проще говоря, мы используем наши новые компьютеры, чтобы проектировать новые еще более быстродействующие компьютеры, и это создает петлю положительной обратной связи, которая еще больше ускоряет наше ускорение. Курцвейл называет это «Законом ускоряющейся отдачи»[21 - Kurzweil R. The Law of Accelerating Returns, March 7, 2001 // kurzweilai.net/the-law-of-accelerating-returns (http://kurzweilai.net/the-law-of-accelerating-returns).]. К технологиям, которые сейчас развиваются такими ускоряющимися темпами, относится ряд самых могущественных новшеств, о которых мы до сих пор могли только мечтать: квантовые компьютеры, искусственный интеллект, роботизация, нанотехнологии, биотехнологии, материаловедение, сети, сенсоры, 3D-печать, дополненная реальность, виртуальная реальность, блокчейн и многое другое.

И все же при всей своей радикальности этот прогресс на самом деле – не более чем новости вчерашнего дня. А свежие состоят в том, что одни ранее независимо нараставшие волны экспоненциально развивающихся технологий начинают сходиться (конвергировать) с другими. Например, скорость разработки лекарств нарастает не только в силу экспоненциального прогресса биотехнологий, но еще и благодаря искусственному интеллекту, квантовым вычислениям и парочке других экспоненциально развивающихся технологий, которые все вместе сходятся в данной области. Иными словами, эти волны начали перекрываться, громоздиться одна на другую и образовывать волны-гиганты цунамического размаха, угрожающие смести все, что попадется им на пути.

Если недавнее новшество создает новый рынок и уничтожает существующий, мы характеризуем его как подрывное[22 - Кристенсен К. М. Дилемма инноватора. Как из-за новых технологий погибают сильные компании. М.: Альпина Паблишер, 2019.]. Когда в начале цифровой эпохи кремниевые микросхемы пришли на смену электронным лампам, это была именно подрывная инновация. Но когда сходятся технологии экспоненциальные, их потенциал приобретает больший масштаб. Одиночные экспоненциальные технологии подрывают продукты, услуги и рынки – подобно тому, как компания Netflix, не поперхнувшись, проглотила сеть видеопроката Blockbuster, – а конвергентные экспоненциальные технологии сметают продукты, услуги и рынки, а заодно с ними и поддерживающие их структуры.

Однако мы забежали вперед. Все, что вам предстоит прочесть в этой книге, как раз и посвящено этим могущественным силам и их быстрому революционному воздействию на устоявшийся порядок вещей. Но прежде чем углубиться в эту захватывающую тему, изучим конвергенцию под более удобной и простой лупой и вернемся к нашему вопросу о летающих автомобилях: почему они «выстрелили» именно сейчас?

В поисках ответа вникнем в три базовых требования, которым должны удовлетворять eVTOL, чтобы попасть в парк компании Uber: безопасность, шум и цена. Ближе всего к концепции аэромобиля подошли вертолеты, существующие уже 80 лет – с тех пор, как Игорь Сикорский в 1939 г. построил первую в миру подобную машину. И все же вертолеты и рядом не лежали с требованиями Uber. Помимо дороговизны и производимого ими адского шума, они имеют дурную привычку падать на землю. Тогда почему и Bell, и Uber, и Airbus, и Embraer – на этом список далеко не исчерпывается – вздумали сегодня выводить на рынок летающие авто?

И снова ответим одним словом: конвергенция.

Вертолеты так шумны и опасны, потому что оснащены одним-единственным гигантским несущим винтом, за счет которого и осуществляется подъем. Окружная скорость несущего винта производит ту правильную частоту вращения, которая порождает настырный «дыр-дыр-дыр», сводящий с ума всякого, у кого есть слух. А опасны вертолеты, потому что если несущий винт забарахлит, гравитация, сами понимаете, тут же сделает свое черное дело.

А теперь представьте, что вместо одного главного несущего винта поверх корпуса летательный аппарат оснащен некоторым количеством винтов поменьше – как если вдоль нижней плоскости крыла разместить ряд маленьких вентиляторов, – и все вместе они создают достаточную подъемную силу, но при этом куда меньше шума. А теперь представьте, что эта мультироторная конструкция вдруг выйдет из строя. И ничего – она мягко приземлится, даже если у нее разом откажет пара роторов. Добавьте к этой конструкции крыло, позволяющее развивать скорость 240 км в час и больше. Все это, конечно, замечательные идеи. Жаль только, что бензиновые двигатели из-за колоссального показателя их весовой удельной мощности ничего подобного добиться не позволяют.

Представляем вам понятие распределенной электрической тяги (distributed electric propulsion, DEP[23 - Moore M. Distributed Electric Propulsion Aircraft // Nasa Langley Research Center // aero.larc.nasa.gov/files/2012/11/Distributed-Electric-Propulsion-Aircraft.pdf (http://aero.larc.nasa.gov/files/2012/11/Distributed-Electric-Propulsion-Aircraft.pdf).]).

Вспыхнувший в последнее десятилетие спрос на коммерческие и военные дроны побудил робототехников (а дроны – те же роботы, только летающие) придумать электромагнитный двигатель нового типа: предельно легкий, практически бесшумный и способный перемещать тяжелые грузы. При его проектировании конструкторы опирались на триаду конвергентных технологий: во-первых, прогресс в машинном обучении позволил им проводить сложнейшее имитационное моделирование полетов[24 - Имитировались воздушные потоки в полете. Прим. науч. ред.]; во-вторых, прорывные достижения в материаловедении позволили создать компоненты достаточно легкие, но при этом достаточно долговечные, что придает им как применимость в конструировании летательных аппаратов, так и надежность; и, наконец, в-третьих, новые производственные технологии – а именно 3D-печать – позволили производить как двигатели, так и несущие винты любого размера. И, кстати, о производительности: КПД этих электродвигателей – 95 %[25 - Строго говоря, КПД этих двигателей находится в диапазоне от 90 до 98 %; конкретную разбивку и сопоставления с бензиновым двигателем см.: Nice K., Strickland J. Gasoline and Battery Power Efficiency // How Stuff Works // auto.howstuffworks.com/fuel-efficiency/alternative-fuels/fuel-cell4.htm (http://auto.howstuffworks.com/fuel-efficiency/alternative-fuels/fuel-cell4.htm).] по сравнению с 28 % у бензинового двигателя. Каково?

Но полеты на DEP, распределенной электрической тяге, – совсем другой коленкор. Регулировать действие дюжины двигателей каждые несколько микросекунд выше человеческих возможностей. DEP-системы снабжены электродистанционным управлением; проще говоря, ими управляет компьютер. А что обеспечивает подобный уровень контроля? Правильно, еще один рой слетевшихся в одну точку конвергентных технологий.

Во-первых, благодаря революции в области искусственного интеллекта мы получили огромные возможности, способные анализировать колоссальные массивы данных, за какие-то микросекунды понимать их смысл и в реальном времени управлять множеством электродвигателей летательного аппарата и, соответственно, устройствами и механизмами самолета. Во-вторых, для усвоения огромного массива данных глаза и уши пилота следует заменить сенсорами, которые способны одновременно и мгновенно обрабатывать гигабайты информации. А для этого необходимы GPS (глобальная система навигации), лидар[26 - LIDAR (Light Detection and Ranging) – обнаружение и определение дальности с помощью света, технология получения и обработки информации об удаленных объектах с помощью оптических систем, которые используют явления поглощения и рассеяния света в оптически прозрачных средах. Прим. перев.], радар, продвинутые видеокамеры и великое множество акселерометров (датчиков ускорения). Многое из перечисленного – плоды десятилетия смартфонных войн.

Наконец, нужны аккумуляторы. Они должны быть достаточно емкими, чтобы пересилить у людей боязнь дальних поездок – или страх, что во время перелета аппарат разрядится, – и с достаточной мощью, или «плотностью мощности», как говорят инженеры, чтобы оторвать от земли аппарат вместе с пилотом и четырьмя пассажирами. Для такого взлета[27 - Интервью Холдена, Nice K., Strickland J. Gasoline and Battery Power Efficiency // How Stuff Works // auto.howstuffworks.com/fuel-efficiency/alternative-fuels/fuel-cell4.htm (http://auto.howstuffworks.com/fuel-efficiency/alternative-fuels/fuel-cell4.htm).] на каждый килограмм веса требуется как минимум 350 кВт?ч электроэнергии. Это до недавних пор было недостижимо. Но тут очень вовремя подоспел взрывной прогресс в таких сферах, как солнечная энергия и электромобили, обостривший потребность в усовершенствованных системах аккумулирования энергии. И родилось следующее поколение литий-ионных аккумуляторов, увеличивающих радиус передвижения электромобилей, а в качестве приятного бонуса – достаточная мощность, чтобы поднять в воздух аэромобиль.

Итак, с двумя переменными в уравнении воздушного райдшеринга – надежностью и шумом – мы разобрались; остается третья – цена, и тут нужны еще несколько инноваций. Плюс еще вопрос упирается в производство достаточного для программы Uber числа eVTOL. Производителю, чтобы удовлетворить ненасытный спрос Uber, да еще и по приемлемой цене, придется выпускать летательные аппараты опережающими по сравнению со временами Второй мировой войны темпами, а тогда за два года удалось произвести рекордное число тяжелых бомбардировщиков B-24 Liberator – 18 тыс. единиц; на самом пике темп производства составлял один самолет за 63 минуты. Пока этот рекорд никем не побит[28 - Staff at Henry Ford. Willow Run Bomber Plant // thehenryford.org/collections-and-research/digital-collections/expert-sets/101765/ (http://thehenryford.org/collections-and-research/digital-collections/expert-sets/101765/).].

Но чтобы такое стало возможно – а именно это и необходимо, чтобы сервис аэротакси из доступной только элите роскоши стал обыденностью, – нам потребуется еще одна триада конвергентных технологий. Для начала системы автоматизированного проектирования и имитационного моделирования должны стать достаточно изощренными, чтобы можно было проектировать аэродинамические поверхности, крылья и фюзеляжи для коммерческих аэромобилей. Наука о материалах должна представить композитные материалы, а также сложные сплавы, достаточно легкие, чтобы их можно было применять в летательных аппаратах, и достаточно прочные, долговечные, надежные в эксплуатации. Наконец, 3D-печать должна стать порасторопнее и побыстрее превращать новые материалы в годные для производства компоненты, чтобы побить все предыдущие рекорды в авиастроении. Иными словами, требуется именно то, к чему мы сейчас пришли.

Так же можно проследить историю любой новой технологии. Носки, например, никак нельзя было изобрести до того, как революция в области материалов превратила растительные волокна в мягкое сырье, а благодаря революции в области орудий труда заостренные обломки костей животных не стали иглами для шитья. Безусловно, это прогресс, но по природе своей он был линейным. Потребовались тысячелетия, чтобы произошел переход от первых шагов в чулочно-носочном деле к следующему эпохальному новшеству – одомашниванию животных (и тогда мы начали применять овечью шерсть). Потребовалось еще несколько тысяч лет, чтобы электричество масштабировало чулочно-носочное производство до фабричного, промышленного уровня.

Однако размытое, как при быстрой перемотке, ускорение, которое мы наблюдаем сегодня – ответ на вопрос «Почему именно сейчас?», – результат конвергенции десятка различных технологий. Это прогресс невиданных в истории темпов. И для нас это проблема.

Человеческий мозг эволюционировал в среде, которая характеризовалась локальностью и линейностью. Локальностью в том смысле, что все, с чем соприкасались наши предки, отстояло от них не более чем на расстояние однодневного перехода. А линейность среды выражалась в том, что перемены происходили крайне медленно. И жизнь вашего прапрапрапрадедушки в целом мало чем отличалась от жизни его праправнука. А сегодня мы живем в мире глобальном и экспоненциальном. Если что-то случается по другую сторону планеты, мы узнаём об этом через секунды (а наши компьютеры «услышат» новость миллисекунды спустя). Экспоненциальность нашего мира выражается в стремительных темпах прогресса. Какие там межпоколенческие различия? Сегодня революция может случиться через считаные месяцы. И все же наш мозг – а по большому счету его аппаратные средства за две последние сотни тысяч лет толком не модернизировались – не предназначался для таких, как сегодня, масштабов или темпов.

Если нам еще кое-как удается уследить за прогрессом отдельной новации, то перед лицом конвергентных новаций мы теряемся. И вот в чем дело: в «Законе ускоряющейся отдачи»[29 - Staff at Henry Ford. Willow Run Bomber Plant // thehenryford.org/collections-and-research/digital-collections/expert-sets/101765/ (http://thehenryford.org/collections-and-research/digital-collections/expert-sets/101765/).] Рэй Курцвейл произвел математические расчеты и определил, что за следующее столетие мы переживем технологические перемены такого же масштаба, на какой в прошлом у человечества ушло 20 тыс. лет. Это как если пройти весь путь прогресса от зарождения сельского хозяйства до интернета, причем дважды и в пределах одного века. Технологические прорывы, которые вызовут парадигмальные сдвиги, зададут принципиально новые правила игры и не оставят камня на камне от реалий мира сегодняшнего, – например, бюджетный воздушный райдшеринг, – уже не будут происходить от случая к случаю. Они станут сыпаться на нас постоянно.

Следовательно, летающие автомобили – лишь начало перемен.

Новые способы передвижения

Беспилотные автомобили

Чуть более века назад происходила другая трансформация средств передвижения. Тройная угроза конвергенции триады технологий – двигателя внутреннего сгорания, движущейся ленты сборочного конвейера и нарождающейся нефтяной промышленности – активно выталкивала из транспортного бизнеса гужевые перевозки.

Первые сделанные на заказ автомобили объявились на дорогах еще на излете XIX века, но переломный момент наступил в 1908 г., когда Форд наладил массовый выпуск своего Ford Model Т[30 - History.com editors. Ford Motor Company Unveils the Model T // History, August 27, 2009 // history.com/this-day-in-history/ford-motor-company-unveils-the-model-t (http://history.com/this-day-in-history/ford-motor-company-unveils-the-model-t).]. Через какие-то четыре года[31 - Kolbert E. Hosed // New Yorker, November 8, 2009.] отчеты по анализу дорожного движения в Нью-Йорке насчитывали на улицах больше автомобилей, чем лошадей. И хотя от быстроты, с которой свершился переход с конной тяги на автомобили, прямо дух захватывало, сейчас он не выглядит таким уж неожиданным. Когда новая технология предлагает десятикратный выигрыш в ценности – будь то дешевизна, скорость или лучшее качество, – мало что сможет замедлить ее шествие.

За десятилетия после изобретения Форда автомобиль, стремительно обраставший всевозможными приспособлениями, атрибутами и новшествами для удобства езды, преобразил облик нашего мира, принеся нам много нового: светофоры, стоп-сигнальные фонари, автострады и многоуровневые эстакады, платные автостоянки и многоэтажные парковки, автозаправки на каждом углу, целую палитру услуг «не выходя из машины», автомойки, спальные пригороды, смог и дорожные заторы. Но хотя мы своими глазами наблюдаем, как зарождается аэрорайдшеринг – а он, похоже, отправит в утиль многие компоненты автотранспортной системы, – другое подкрадывающееся к нам революционное новшество грозит вообще уничтожить ее, и имя ему – беспилотные автомобили.

Первое беспилотное авто, называвшееся американским чудом – American Wonder[32 - Kroger F. Automated Driving in Its Social, Historical and Cultural Contexts // Autonomous Driving, May 22, 2016. Pp. 41–68.], – было радиоуправляемым и разъезжало по улицам Нью-Йорка в 1920-х гг., но по большому счету это была всего лишь игрушечная машинка-переросток. Более современные инкарнации беспилотного транспорта возникли из желания военных обеспечить войскам безопасное пополнение запасов. Инженеры-робототехники взялись решать эту задачу в 1980-х гг.; автопроизводители повернулись в ее сторону только в 1990-х гг. Переломный момент многие датируют 2004 годом[33 - Полную раскладку событий см. на сайте DARPA: darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles (http://darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles).], когда DARPA (Defense Advanced Research Projects Agency, Управление перспективного планирования оборонных научно-исследовательских работ), желая придать турбоускорение разработке автомобилей-роботов, учредило для них гонки собственного имени – DARPA Grand Challenge.

Трюк с гонками сделал свое дело. По прошествии десяти лет большинство ведущих автопроизводителей и некоторое число ведущих технологических компаний уже полным ходом реализовывали программы разработки автомобилей с автоматическим управлением. К середине 2019 г. дюжины беспилотных авто уже исколесили миллионы[34 - Madrigal A. Waymo’s Robots Drove More Miles Than Everyone Else Combined // Atlantic, February 14, 2009 // theatlantic.com/technology/archive/2019/02/the-latest-self-driving-car-statistics-from-california/582763/ (http://theatlantic.com/technology/archive/2019/02/the-latest-self-driving-car-statistics-from-california/582763/).] километров по калифорнийским дорогам. Традиционные игроки отрасли калибра BMW, Mercedes и Toyota вовсю конкурировали за нарождающийся рынок робомобилей с технологическими гигантами Apple, Google (через Waymo), Uber и Tesla, пробовали разные конструкционные формы, собирали данные и совершенствовали нейронные сети.

Среди названных компаний Waymo, пожалуй, занимает самые выгодные позиции, чтобы на первых порах захватить лидерство на рынке. В прошлом это гугловский проект беспилотного автомобиля, и она включилась в работу с 2009 г., когда пригласила в штат профессора Стэнфордского университета и победителя DARPA Grand Challenge Себастьяна Труна[35 - Гонку в 2005 г. выиграл роботизированный автомобиль Stanley, разработкой которого руководил Себастьян Трун. Прим. перев.]. Он помог в разработке ИИ-системы, призванной служить «мозгом» парка автоматически управляемых автомобилей Waymo. Десятью годами позже, в марте 2018 г., Waymo закупила этот парк[36 - Hawkins A. Waymo and Jaguar Will Build Up to 20,000 Self-Driving Electric SUVs // Verge, March 27, 2018 // theverge.com/2018/3/27/17165992/waymo-jaguar-i-pace-self-driving-ny-auto-show-2018 (http://theverge.com/2018/3/27/17165992/waymo-jaguar-i-pace-self-driving-ny-auto-show-2018).] – 20 тыс. беспилотных кроссоверов Jaguar для запуска планируемого сервиса такси. С таким штатом автомобилей Waymo намеревалась в 2020 г. осуществлять по миллиону поездок в сутки (вроде бы они и высоко замахнулись, но напомним, что Uber в 2019 г. совершала 15 млн поездок в сутки). Вы оцените, насколько важны цифры подобного порядка, когда узнаете, что чем больше километров проезжает беспилотный автомобиль, тем больше информации накапливает его электронный мозг, а данные для мира беспилотных авто – то же, что бензин для современного автомира.

С 2009 г. автомобили Waymo покрыли более 16 млн км. К 2020 г. с 20 тыс. Jaguar, совершающих сотни тысяч поездок в сутки, Waymo запланировала ежедневно накручивать еще по паре миллионов километров. И все они важны. Бегая по дорогам, беспилотные автомобили собирают разнообразную информацию: о местах расположения дорожных знаков, дорожных условиях и т. п. А чем больше приток информации, тем умнее алгоритмы и тем безопаснее автомобили – вот вам и рецепт лидерства на рынке.

Вот и General Motors в конкуренции с Waymo[37 - См. текст пресс-релиза General Motors: media.gm.com/media/us/en/gm/news.detail.html/content/Pages/news/us/en/2018/may/0531-gm-cruise.html (http://media.gm.com/media/us/en/gm/news.detail.html/content/Pages/news/us/en/2018/may/0531-gm-cruise.html).] наверстывает упущенное время массированными инвестициями. В 2018 г. компания влила 1,1 млрд долл. в подразделение беспилотных авто GM Cruise. Несколькими месяцами позже GM приняла еще 2,25 млрд долл. инвестиций от японского конгломерата Softbank – через считаные месяцы после того, как Softbank приобрел 15 %-ную долю в капитале Uber. Когда же произойдет анонсируемая трансформация средств передвижения, учитывая, что в ней крутятся колоссальные капиталы и задействованы такие игроки-тяжеловесы?

«Быстрее, чем можно ожидать[38 - В беседе с автором.], – отвечает Джефф Холден (он тоже не остался в стороне, а основал в Uber лабораторию ИИ и подразделение автомобилей-беспилотников). – Более 10 % миллениалов уже предпочитают райдшеринг владению личным автомобилем, но это только начало. Беспилотники будут вчетверо-впятеро дешевле – и владение автомобилем станет не только необязательным, но и весьма затратным. Лет через десять, рискнем предположить, желающим водить управляемый человеком автомобиль, вероятно, придется выправлять себе особое разрешение».

Потребителям эта трансформация откроет много выгод. Американцы будут не против тратить на ежедневные поездки на работу и обратно полчаса или меньше, но если за рулем робот, а сам автомобиль по желанию можно превратить во что угодно – хоть в спальню, хоть в переговорную, хоть в кинозал, – вам наверняка понравится идея переселиться подальше от своей работы, туда, где за меньшие деньги можно приобрести жилье получше и попросторнее. Отказ от автомобиля позволит переоборудовать гараж под еще одну гостевую спальню, а на месте подъездной дорожки разбить розарий, и вам не придется больше тратиться на покупку бензина. Автомобили-то электрические и за ночь сами себя перезаряжают. Больше не придется нарезать бесконечные круги по переулкам в поисках свободного парковочного места. И штрафы за неправильную парковку уже не будут тревожить ваш кошелек. Как и штрафы за пьяное вождение. Внимание: поступления в городскую казну рискуют здорово просесть.

Эти тренды – подрывные. Но они меркнут в сравнении с двумя более могущественными преобразующими силами: первая – демонетизация, она исключает из уравнения деньги. Райдшеринговые беспилотные автомобили будут обходиться на 80 % дешевле, чем владение личным автомобилем[39 - В беседе с автором.], к тому же приезжают к вам уже вместе с роботом-водителем. Вторая сила – сэкономленное время. В США ежедневная поездка на работу и обратно[40 - U.S. Census Bureau. Average One – Way Commuting Time by Metropolitan Areas, December 7, 2017 // census.gov/library/visualizations/interactive/travel-time.html (http://census.gov/library/visualizations/interactive/travel-time.html).] в среднем занимает 50,8 минуты – нудных, отупляющих, выматывающих душу, которые вы могли бы посвятить сну, чтению, обмену твитами… кому что нравится.

Для крупных автопроизводителей эти тренды – тот самый колокол, который звонит по ним, возвещая начало конца, особенно для тех, кто продает автомобили в собственность, а не предлагает как услугу. В 2019 г. уже существовала сотня с небольшим марок беспилотных автомобилей[41 - На странице «Википедии» en.wikipedia.org/wiki/List_of_car_brands (https://en.wikipedia.org/wiki/List_of_car_brands) представлен полный перечень этих автомобильных брендов, как действующих, так и ушедших с рынка.]. В следующие десять лет можно ожидать консолидации отрасли, ведь экспоненциальная технология нацелилась на Детройт, Германию и Японию.

Первым драйвером консолидации автомобилестроения выступит коэффициент использования [рабочего времени] автомобиля. Сегодня среднестатистический автовладелец[42 - Шуп Д. Высокая стоимость бесплатной парковки // publications.hse.ru/books/201793177 (http://publications.hse.ru/books/201793177).] использует свое транспортное средство менее 5 % времени, а в семьях с двумя взрослыми, как правило, по два автомобиля. Таким образом, один беспилотный автомобиль смог бы обслуживать за день полдюжины семей. Как ни играй с этими цифрами, впечатляющий рост эффективности сотрудничества в использовании автомобиля значительно снизит потребность в производстве машин.

Вторым драйвером станет функциональность. Компании на рынке райдшеринга, собирающие наибольшие объемы данных и располагающие самыми многочисленными автопарками, смогут предлагать потребителям наименьшее время ожидания и самые дешевые поездки. А на рынке подобного рода дешевизна и быстрота – два важнейших фактора, определяющих потребительский выбор. И здесь не важно, на авто какой марки произойдет поездка. Если в салоне чисто и опрятно, потребители в большинстве случаев даже не обратят на это внимания – примерно так же, как большинству из нас все равно, какую машину пришлет нам агрегатор Uber или Lyft. Получается, что если для удовлетворения потребителя хватит полдюжины различных марок автомобилей, за волной консолидации автопроизводителей, судя по всему, последует волна, которая попросту уничтожит их.

<< 1 2 3 4 5 >>
На страницу:
2 из 5