Оценить:
 Рейтинг: 0

Во все уши. Про многозадачный орган, благодаря которому мы слышим, сохраняем рассудок и держим равновесие

<< 1 2 3 4 5 6 7 8 >>
На страницу:
6 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля
Что именно происходит во внутреннем ухе при слушании, ни один ученый в мире еще не сумел пронаблюдать. Защитная стенка пирамиды височной кости слишком непроницаема, слуховой орган чересчур маленький, а весь лабиринт излишне чувствителен. Поэтому многие предположения о процессе слушания опираются на научные теории, окончательно не подтвержденные.

Внутреннее ухо – один из самых сложных и в то же время наиболее чувствительных аппаратов, предназначенных для восприятия окружающего мира.

Но что мы, собственно, можем знать о внутреннем ухе при таких обстоятельствах? Большинством полученных знаний мы обязаны таким умникам, как венгерский почтовый служащий Георг фон Бекеши. Его работа была связана с наладкой телефонных линий, но он стремился как можно лучше разобраться в сути проблемы и включил ухо в свои рассуждения как конечный пункт назначения каждой телефонной связи. То, что ученый обнаружил, коренным образом изменило наше знание о слухе. Его открытие оказалось настолько значимым, что он стал первым и единственным человеком, получившим за тему слуха Нобелевскую премию в области медицины. При этом Георг фон Бекеши был физиком, а не медиком. Однако его полная приключений история жизни доказывает, что творческий ум сумеет достичь максимальных успехов, только выйдя за пределы своей научной дисциплины.

Нобелевская премия за пластиковую трубку с резиновой лентой

В начале XX века ученые лишь строили предположения о том, что происходит во внутреннем ухе. Благодаря защитному экрану в виде пирамиды височной кости, лабиринт оставался темной лошадкой. И хоть основное строение уже было известно, на живых людях процесс слушания пронаблюдать не удавалось, как и по сей день.

Тем не менее к тому времени удалось выяснить, как звук подается на улитку через барабанную перепонку и слуховые косточки. Также было известно, что за преобразование звука в электрические сигналы отвечают около 16 тысяч волосковых клеток внутри улитки. Они располагаются четырьмя рядами внутри мембранной части на всем протяжении двух с половиной витков улитки. Было высказано справедливое предположение, что каждый ряд волосковых клеток отвечает за передачу звуков с разной высотой. Правда, оставалось загадкой, каким образом волосковые клетки могут различать высокие и низкие частоты, ведь все звуковые волны всегда проходят через всю улитку. Следовательно, практически любой шум должен стимулировать все волосковые клетки, в результате чего было бы невозможно различить разные звуки. Вы можете представить это как игру на всех клавишах пианино одновременно – невозможно разобрать отдельные ноты или даже мелодию.

Когда в середине 1920-х годов Георг фон Бекеши устроился в венгерскую почтовую службу, он даже не подозревал, что разгадает эту загадку. В 1923 году он получил докторскую степень по физике в Университете Будапешта, но выбор подходящих должностей был невелик. Так он устроился на работу, которая заключалась в разработке метода тестирования и улучшения телефонных линий, пребывавших после окончания Первой мировой войны в плохом состоянии. Наряду с микрофонами, кабелями и динамиками важной частью цепи передачи фон Бекеши счел ухо. Но он не мог просто разобрать его, словно телефонную трубку, чтобы изучить его функции. Или мог?

Рабочее время ученого обычно заканчивалось примерно около часа дня, поэтому во второй половине дня он посещал анатомические театры при больницах. Ему удалось приобрести кости черепа только что умершего человека. Неизвестно, как он уговорил врачей отдать их телефонному технику, но, очевидно, его аргументы были убедительными.

Фон Бекеши приспособил инструменты лаборатории почтовой службы, чтобы обрабатывать под микроскопом твердые височные кости с помощью крошечных ножниц, сверл и ножей. Целью ученого было открыть улитку, не повредив чувствительную внутреннюю часть. Поскольку внутреннее ухо заполнено жидкостями, ему приходилось постоянно омывать ткани питательным раствором, чтобы предотвратить высыхание. Скорее всего, его коллеги не радовались, обнаруживая на сверлах костную пыль и жидкости неопределенного происхождения! Но фон Бекеши не давал себя смутить и упорно продолжал развивать свой метод.

После того как ученому наконец удалось открыть улитку, он сделал интересное наблюдение. Все волосковые клетки оказались расположены на тонкой базилярной мембране. Она начинает колебаться, как только звуковая волна из среднего уха передается по жидкости во внутреннем ухе; колебание переходит на волосковые клетки. Фон Бекеши предполагал, что тип колебания базилярной мембраны меняется в зависимости от высоты звука и таким образом целенаправленно стимулирует те волосковые клетки, которые отвечают за передачу звуков именно такой высоты. Поэтому он тщательно исследовал мембрану длиной три с половиной сантиметра. Он установил, что у входа в улитку она туго натянута и по мере приближения к концу улитки становится все подвижнее. В то же время на протяжении этого расстояния мембрана расширяется. Но какое влияние это оказывает на дальнейшую передачу звука?

Пять вещей, которые следует знать о внутреннем ухе

• Внутреннее ухо состоит из костного лабиринта и лежащего внутри него мембранного лабиринта.

• Костный лабиринт не представляет собой цельное костное образование, а состоит из связанных полостей в пирамиде височной кости.

• Пирамида височной кости – одна из самых твердых костей во всем теле. Она не дает никому ничего сквозь нее разглядеть.

• Оболочка мембранного лабиринта местами достигает толщины всего в одну клетку.

• Две жидкости, находящиеся во внутреннем ухе, ни под каким видом не должны смешиваться: эндолимфа (мембранный лабиринт) и перилимфа (костный лабиринт). Их разделяет слой клеток мембраны.

Физику фон Бекеши пришла идея построить увеличенную модель. Причем его не интересовало реалистичное воссоздание улитки – ученый сосредоточился на физических свойствах базилярной мембраны. Внутри прямой пластиковой трубки он натянул резиновую ленту, которая сужалась от одного конца к другому, что приблизительно соответствовало развернутой улитке с базилярной мембраной. Затем на входе в трубку он начал производить различные по высоте звуки и проверял ее вибрацию. Фактически при высоких звуках более сильные вибрации возникали в начале искусственной базилярной мембраны, там, где она была натянута туже и имела меньшую ширину, а при низких звуках – на более широком и подвижном конце. Так было доказано, что различные по высоте звуки воздействуют на разные участки улитки. Чем выше частота (см. шпаргалку на стр. 70), тем ближе ко входу в улитку будет происходить колебание.

И все же у экспериментальной установки фон Бекеши имелась одна проблема: хотя каждая высота звука заставляла колебаться определенную часть трубки, вся трубка целиком тоже постоянно вибрировала. Как могло получиться, что в ухе реагировали не все волосковые клетки, а только те, которые находились в положении максимального колебания, хотя должна была бы резонировать вся улитка? Здесь модель достигла своих пределов. Но вместо того чтобы все бросить, фон Бекеши придумал решение, настолько же простое, насколько и гениальное, положив на трубку предплечье, чтобы чувствовать вибрации внутри нее. В результате он установил, что вибрация не ощущалась по всей длине мембраны, а только на том участке, который колебался особенно сильно. Когда он изменял частоту, ощущение перемещалось по его предплечью. Подобным образом, заключил фон Бекеши, все должно происходить и с волосковыми клетками в ухе. Если некоторые из них особенно раздражены, нервная система подавляет ощущение от соседних клеток, вибрирующих меньше. Он оказался прав и в 1961 году получил Нобелевскую премию за свою теорию бегущей волны.

Сорок пианино в нашей голове

Благодаря бегущим волнам ухом регистрируются не все звуки одновременно, а лишь те, что громче на определенной частоте. Предплечье Георга фон Бекеши уже сослужило хорошую службу, но бегущие волны можно проиллюстрировать еще нагляднее с помощью пианино. Начнем с правой стороны. Нажимая одну клавишу за другой, мы сначала услышим самый высокий звук, который затем будет становиться все ниже. Внутри улитки бегущие волны двигаются от входа дальше вовнутрь, по мере того как становятся все ниже. К тому времени как мы доберемся до клавиши с самым низким звуком слева и достигнем участка неподалеку от центра улитки, пройдем частоты от 4186 до 27,5 герц. Это значит, что на клавише с самым низким звучанием звуковая волна колеблется 27,5 раз в секунду, а на клавише с самым высоким звучанием – 4186 раз. Это очень широкий диапазон, но базилярная мембрана рассчитана на воспроизведение колебаний, превышающих его в пять раз, – от 16 до 20 000 герц.

Ухом регистрируются не все звуки одновременно, а лишь более громкие на определенной частоте.

Колебания около 20 килогерц на входе в улитку могут слышать только дети. С возрастом порог слуха продолжает снижаться – например, к 40 годам он составляет около 15 килогерц. Если ухо внезапно подвергается воздействию очень громкого шума, на частоте 6 килогерц часто происходит потеря слуха, так называемая звуковая травма при выстреле. Снижение слуха в связи с длительным воздействием шума зачастую наблюдается на частоте 4 килогерц, например, в результате продолжительной работы с громкими механизмами или музыкой. На частоте 3 килогерц поют профессиональные певцы, такие как оперные теноры, голос которых обладает большой громкостью, и благодаря ему их хорошо слышно на фоне громких оркестров. Низкие звуки на частоте 100 герц, например гул двигателей, воспринимаются нами в центре улитки.

По сравнению с нашим ухом клавиатура пианино очень грубо поделена всего на 88 клавиш. В нашем распоряжении, напротив, имеется приблизительно по 16 тысяч волосковых клеток на каждое ухо, из которых около 3500 отвечают за одну высоту звука. Чтобы добиться того же разрешения, каким обладает наш слух, придется выстроить в ряд 40 пианино, у которых все клавиши будут настроены на разную высоту звучания. Они займут расстояние протяженностью более 47 метров, что практически превышает длину дорожки в плавательном бассейне (если она 25 метров). Длина базилярной мембраны составляет всего три с половиной сантиметра, но она может воспроизводить столько же различных звуков, как и длинная вереница пианино!

Это покажется еще более удивительным, когда мы осознаем, что клавиши никогда не нажимаются по отдельности. Во время разговора при нормальном фоновом шуме в нашей голове происходит игра на разных клавишах у 40 пианино одновременно. Разнообразные бегущие волны заставляют базилярную мембрану вибрировать в нескольких местах одновременно, но, несмотря на это, мы умудряемся понять коллегу и выделить его голос из окружающего шума. Разумеется, эту способность не следует приписывать одним лишь ушам – весь процесс происходит главным образом в мозге. Но что именно там происходит, мы узнаем в части II.

Гидропс – это не леденец[7 - Название главы отсылает к названию немецкого фильма 1981 года (Кактус не фруктовое мороженое).]

Я сижу за кухонным столом, уставившись на пачку банкнот, лежащую передо мной. Не каждый день увидишь семь тысяч евро наличными. Это финансовое вливание поможет мне продержаться какое-то время, но я не спешу радоваться. Автовладелец, давший деньги, только что уехал с моим фургоном. Отныне мне суждено передвигаться на велосипеде, автобусе, поезде и своих двоих, когда у жены не будет времени на поездки.

С тех пор как я покинул больницу, прошло три недели. За это время мне пришлось принять множество важных решений. Продать фургон было одним из них. Кроме того, я больше не диджей, поэтому практически безработный. Я собираюсь постепенно сообщать клиентам о своей болезни и постараюсь найти для них другого диджея. Врач-отоларинголог настоятельно советовала мне не крутить пластинки, чтобы поберечь уши. В этом нет ничего нового: с тех пор как три года назад случилось резкое падение слуха, она регулярно уговаривает меня сменить работу. Но об этом нелегко говорить, когда ты на вершине успеха.

Работа диджея – это тяжелый физический труд, который перенапрягает не только уши.

За полгода до падения слуха я опубликовал книгу для молодоженов, в которой с юмором рассказывал о свадебных неприятностях и давал советы, как их избежать. Содержание книги опирается на опыт сотен праздников, проведенных мной в качестве диджея. Книга Wer Ja sagt, darf auch Tante Inge ausladen[8 - «Тот, кто скажет „Да“, может отказать в приглашении тете Инге».] стала хитом: я был гостем на ток-шоу и радио, интервью со мной печатали в газетах. И вот у меня уже нет отбоя от запросов на бронирование услуг, поступающих от молодоженов со всей Германии. Я перестал справляться с потоком электронных писем, и, чтобы взять ситуацию под контроль, еще повысил цены, но по-прежнему получал много предложений.

Представьте: вы сами себе начальник, реклама не нужна, потому что заказов более чем достаточно. Вам платят большие деньги за работу, доставляющую удовольствие, в которой вы профессионал. Ваша деятельность делает людей счастливыми. Вы путешествуете и можете совмещать командировки с отпуском. За это даже не нужно никого благодарить – спасибо говорят вам. В свете всех обстоятельств смогли бы вы всерьез отказаться от этой профессии?

И вот теперь мне пришлось увидеть обратную сторону медали. Все работало как нельзя лучше, пока работал я. С точки зрения физиологии, шумная ночная работа за пультом диджея – это тяжелый физический труд, который перенапрягает не только уши. Каждые выходные я выкладывался до полного изнеможения, чтобы оправдать репутацию. В течение недели я записывал музыку в студии, продолжая нагружать слух. Падение слуха уже было явным предупреждением со стороны организма. Теперь я плачу высокую цену за то, что проигнорировал его.

Звонок в дверь вырывает меня из омута мрачных мыслей. Андреас как раз приехал по делам в Гамбург и сегодня выделил время, чтобы проведать меня. К сожалению, мы редко видимся, потому что он живет почти в восьмистах километрах отсюда, на юге Германии. После теплого приветствия мы усаживаемся за кухонный стол. Он показывает на пачку денег:

– Это гонорар за мои консультации?

Я с улыбкой киваю и отвечаю:

– Первый взнос как минимум.

У нас всегда было похожее чувство юмора. Это упрощает решение сложных вопросов. Я сообщаю о продаже фургона и решении уйти из профессии.

– Перестать крутить пластинки – это мудрое решение, – говорит Андреас. – Сейчас самое важное – беречь уши. А как в целом твои дела?

– Так себе. Головокружение в основном прошло, но часто у меня бывает странное ощущение. Например, когда в супермаркете я прохожу мимо высоких полок, мне почему-то кажется, что пол наклоняется, и я начинаю покачиваться. Иногда начинается паника от страха перед возможным приступом головокружения.

Он кивает:

– Будь осторожнее. Смотри, чтобы у тебя не развилось психогенное головокружение, тогда твой мозг начнет разыгрывать приступы, даже если уши будут ни при чем. Тебе оказывают психологическую помощь?

– Да, я хожу на курсы поведенческой терапии.

– Очень хорошо, как раз то, что нужно в таком случае.

– Тогда я спокоен. А то, что я так плохо слышу больным ухом, скорее всего, уже не изменится, верно?

– Боюсь, что нет. Твои волосковые клетки серьезно повреждены.

– То же самое говорит моя врач. Но для чего вообще нужны эти волосковые клетки? Они что, отвечают и за слух, и за равновесие?

Андреас делает глубокий вдох.

– Это все взаимосвязано и довольно сложно.

– Попробуй, пожалуйста, объяснить максимально простыми словами. Давай начнем вот с чего: что это за эндолимфатический гидропс, который у меня подтвердился? Так или иначе, ни один врач пока не смог дать мне разумного объяснения.

– Мне знакома эта проблема еще по тем временам, когда я работал в больнице. Приходится наблюдать слишком многих пациентов одновременно, и не всегда получается проводить углубленные индивидуальные беседы с каждым. Но я всегда старался выделять время для сложных случаев. Начну издалека.

Дальше Андреас подробно объясняет, как устроено внутреннее ухо. Я узнаю, что мембранный лабиринт, в котором находятся сенсорные клетки, заполнен жидкостью, называемой эндолимфой. Гидропс означает, что у меня слишком много этой жидкости в мембранном лабиринте, поэтому она выпирает изнутри.

<< 1 2 3 4 5 6 7 8 >>
На страницу:
6 из 8