Оценить:
 Рейтинг: 4.5

Общее землеведение

Год написания книги
2015
Теги
<< 1 2 3 4 5 6 7 8 9 10 11 >>
На страницу:
6 из 11
Настройки чтения
Размер шрифта
Высота строк
Поля

При прохождении сквозь тело Земли сейсмических волн (продольных и поперечных) скорости их на некоторых глубинных уровнях заметно меняются (причем скачкообразно), что свидетельствует об изменении свойств среды, проходимой волнами. Продольные волны связаны с напряжениями растяжения (или сжатия), ориентированными по направлению их распространения; поперечные волны вызывают колебания среды, ориентированные под прямым углом к направлению их распространения (в жидкой среде не распространяются).

Современные представления о распределении температуры, плотности и давления внутри Земли иллюстрирует рис. 5. Из рисунка видно, что в центре Земли плотность достигает 14,3 г/см

и что она резким скачком (от 5,5 до 10,0 г/см

) меняется на глубине 2900 км, а затем на глубине 5000 км (от 11,4 до 13,8 г/см

). Первый скачок позволяет выделить плотное ядро, а второй – подразделить это ядро на внешнюю (2900–5000 км) и внутреннюю (от 5000 км до центра) части.

Во внутреннем строении Земли выделяют земную кору, мантию и ядро.

Земная кора – первая оболочка твердого тела Земли, имеет мощность 30–40 км. По объему она составляет 1,2 % объема Земли, по массе – 0,4 %, средняя плотность равна 2,7 г/см

. Состоит преимущественно из гранитов, осадочные породы в ней имеют подчиненное значение. Гранитная оболочка, называемая «сиаль», богата кремнием и алюминием. От мантии земная кора отделена сейсмическим разделом, названным границей Мохо, по фамилии сербского геофизика А. Мохоровичича (1857–1936). Здесь происходит скачок скоростей продольных сейсмических волн примерно до 8 км/с (рис. 6). Эта граница четкая и наблюдается во всех местах Земли на глубинах от 5 до 90 км. Раздел Мохо не является просто границей между породами различного типа, а представляет собой плоскость фазового перехода между эклогитами и габбро мантии и базальтами земной коры.

Рис. 6.

Внутреннее строение Земли и скорости распространения продольных (Р) и поперечных (S) сейсмических волн (по Аплонову, 2001)

При переходе из мантии в кору давление падает, габбро переходят в базальты (здесь залегает богатая кремнием и магнием оболочка, называемая «сима»). Переход сопровождается увеличением объема на 15 % и, соответственно, уменьшением плотности. Поверхность Мохо считают нижней границей земной коры. Важная особенность этой поверхности состоит в том, что в общих чертах она представляет собой как бы зеркальное отражение рельефа земной поверхности: под океанами она выше, под континентальными равнинами ниже, под наиболее высокими горами опускается ниже всего (это так называемые корни гор).

Мантия составляет 83 % объема Земли и 68 % ее массы. Предполагается, что она сложена расплавленной силикатной массой, насыщенной газами. Скорости распространения продольных и поперечных волн в нижней части мантии возрастают соответственно до 13 и 7 км/с (см. рис. 4). Плотность вещества возрастает до 5,7 г/см

. На границе с ядром температура увеличивается до 3800 °C, давление – до 1,4 · 10

Па. Выделяют верхнюю мантию до глубины 900 км и нижнюю – до 2900 км. В верхней мантии на глубине 150–200 км присутствует астеносферный слой. Астеносфера (греч. asthenes – слабый) – слой пониженной твердости и прочности в верхней мантии Земли. Астеносфера – основной источник магмы, в ней располагаются очаги питания вулканов и происходит перемещение литосферных плит.

Ядро занимает 16 % объема и 31 % массы планеты. Температура в нем достигает 5000 °C, давление – 37 · 10

Па, плотность – 16 г/см

. Ядро делится на внешнее (до глубины 5100 км), находящееся в жидком состоянии, и внутреннее – твердое. Во внешнем ядре скорость распространения продольных волн падает до 8 км/с, а поперечные волны не распространяются вовсе, что принимается за доказательство его жидкого состояния. Глубже 5100 км скорость распространения продольных волн возрастает и вновь проходят поперечные волны (см. рис. 6). Внешнее ядро состоит из железа или металлизованных силикатов, внутреннее – железоникелевое. В ядре Земли происходит металлизация вещества, обусловливая образование электрических токов и магнитосферы.

3.3. Земной магнетизм

Вокруг Земли существуют разнообразные поля, наиболее сильное влияние на ГО оказывают гравитационное и магнитное.

Гравитационное поле. Гравитационное поле Земли – это поле силы тяжести. Сила тяжести – равнодействующая сила между силой притяжения и центробежной силой, возникающей при вращении Земли. Центробежная сила достигает максимума на экваторе, но и здесь она мала и составляет 1/288 от силы тяжести. Сила тяжести на Земле в основном зависит от силы притяжения, на которую оказывает влияние распределение масс внутри Земли и на поверхности. Действует сила тяжести повсеместно на Земле и направлена по отвесу к поверхности геоида. Напряженность гравитационного поля равномерно уменьшается от полюсов к экватору (на экваторе больше центробежная сила), от поверхности вверх (на высоте 36 000 км равна нулю) и от поверхности вниз (в центре Земли сила тяжести равна нулю).

Нормальным гравитационным полем Земли называется такое поле, которое было бы у Земли, если бы она имела форму эллипсоида с равномерным распределением масс. Напряженность реального поля в конкретной точке отличается от нормального, возникает аномалия гравитационного поля. Аномалии могут быть положительными и отрицательными: горные хребты создают дополнительную массу и должны вызывать положительные аномалии, а океанические впадины, наоборот, отрицательные. Но на самом деле земная кора находится в изо-статическом равновесии.

Изостазия (от греч. isostasios – равный по весу) – уравновешивание твердой, относительно легкой земной коры более тяжелой верхней мантией. Теория равновесия была выдвинута в 1855 г. английским ученым Г.Б. Эйри. Благодаря изостазии избытку масс выше теоретического уровня равновесия соответствует недостаток их внизу. Это выражается в том, что на определенной глубине (100–150 км) в слое астеносферы вещество перетекает в те места, где имеется недостаток масс на поверхности. Только под молодыми горами, где компенсация еще полностью не произошла, наблюдаются слабые положительные аномалии. Однако равновесие непрерывно нарушается: в океанах происходит отложение наносов, под их тяжестью дно океанов прогибается; горы разрушаются, высота их и, следовательно, масса уменьшаются.

Значение гравитационного поля Земли для ее природы:

1. Сила тяжести создает фигуру Земли, она является одной из ведущих эндогенных сил. Благодаря ей выпадают атмосферные осадки, текут реки, формируются горизонты подземных вод, наблюдаются склоновые процессы. Давление масс вещества, реализующееся в процессе гравитационной дифференциации в нижней мантии, наряду с радиоактивным распадом порождает тепловую энергию – источник внутренних (эндогенных) процессов, перестраивающих литосферу.

2. Земное тяготение уплотнило внутреннее вещество Земли и независимо от его химического состава сформировало плотное ядро.

3. Главным в истории планеты с геофизической точки зрения является процесс гравитационной дифференциации вещества – расслоение в соответствии с его плотностью в поле силы тяжести. В результате такого расслоения возникли геосферы, каждая из которых сложена веществом одного агрегатного состояния и сходной плотности.

4. Сила тяжести удерживает газовую и водную оболочки планеты. Атмосферу планеты покидают только самые легкие молекулы водорода и гелия.

5. Сила тяжести обусловливает стремление земной коры к изо-статическому равновесию. Силой тяжести объясняется максимальная высота гор; считается, что на нашей Земле не может быть гор выше 9 км.

6. Астеносфера – размягченный теплом слой, допускающий движение литосферы, тоже следствие силы тяжести, поскольку расплавление вещества происходит при благоприятном соотношении количества тепла и величины сжатия (давления).

7. Шаровая фигура гравитационного поля определяет два основных вида форм рельефа на земной поверхности – конический и равнинный, которые соответствуют двум универсальным формам симметрии – конической и билатеральной.

8. Направление силы тяжести к центру Земли помогает животным удерживать вертикальное положение.

Температура поверхностного слоя земной коры (в среднем до 30 м) определяется солнечным теплом. Это гелиометрический слой, испытывающий сезонные колебания температуры. Ниже – еще более тонкий горизонт постоянной температуры (около 20 м), соответствующий среднегодовой температуре места наблюдения. Ниже постоянного слоя температура с глубиной нарастает (,геотермический слой).Изменение температуры при углублении в Землю на 100 м называется геотермическим градиентом.Его значения колеблются от 0,1 до 0,01 °C/м и зависят от состава горных пород, условий их залегания. Расстояние по отвесу, на которое необходимо углубиться, чтобы получить повышение температуры на 1 °C, называется геотермической ступенью(колеблется от 10 до 100 м/°С).

Магнитное поле. Земной магнетизм– свойство Земли, обусловливающее существование вокруг нее магнитного поля, вызванного процессами, происходящими на границе «ядро – мантия». Впервые о том, что Земля – магнит, человечество узнало благодаря работам У. Гильберта.

Магнитосфера– область околоземного пространства, заполненная заряженными частицами, движущимися в магнитном поле Земли. Она отделена от межпланетного пространства магнитопаузой. Это внешняя граница магнитосферы. В основе образования магнитного поля лежат внутренние и внешние причины. Постоянное магнитное поле образуется благодаря электрическим токам, возникающим во внешнем ядре планеты. Солнечные корпускулярные потоки образуют переменное магнитное поле Земли. Наглядное представление о состоянии магнитного поля Земли дают магнитные карты. Они составляются на пятилетний срок – магнитную эпоху.

У Земли было бы нормальное магнитное поле, будь она однородно намагниченным шаром. В первом приближении Земля представляет собой магнитный диполь – стержень, концы которого имеют противоположные магнитные полюса. Места пересечения магнитной оси диполя с земной поверхностью называются геомагнитными полюсами. Геомагнитные полюса не совпадают с географическими и медленно движутся со скоростью 7–8 км/год. Отклонения реального магнитного поля от нормального (теоретически рассчитанного) называются магнитными аномалиями. Они могут быть мировыми (Восточно-Сибирский овал), региональными (Курская магнитная аномалия) и локальными, связанными с близким залеганием к поверхности магнитных пород.

Магнитное поле характеризуется тремя величинами: магнитным склонением, магнитным наклонением и напряженностью. Магнитное склонение– угол между географическим меридианом и направлением магнитной стрелки. Склонение бывает восточным (+), если северный конец стрелки компаса отклоняется к востоку от географического меридиана, и западным (-), когда стрелка отклоняется к западу. Магнитное наклонение– угол между горизонтальной плоскостью и направлением магнитной стрелки, подвешенной на горизонтальной оси. Наклонение положительное, когда северный конец стрелки смотрит вниз, и отрицательное, если северный конец направлен вверх. Магнитное наклонение изменяется от 0 до 90°. Сила магнитного поля характеризуется напряженностью.Напряженность магнитного поля небольшая: на экваторе – 20–28 А/м, на полюсе – 48–56 А/м.

Магнитосфера имеет каплевидную форму (рис. 7). На стороне, обращенной к Солнцу, ее радиус равен 10 радиусам Земли, на ночной стороне под влиянием «солнечного ветра» увеличивается до 100 радиусов.

Форма обусловлена воздействием солнечного ветра, который, наталкиваясь на магнитосферу Земли, обтекает ее. Заряженные частицы, достигая магнитосферы, начинают двигаться по магнитным силовым линиям и образуют радиационные пояса.Внутренний радиационный пояс состоит из протонов, имеет максимальную концентрацию на высоте 3500 км над экватором. Внешний пояс образован электронами, простирается до 10 радиусов. У магнитных полюсов высота радиационных поясов уменьшается, здесь возникают области, в которых заряженные частицы вторгаются в атмосферу, ионизируя газы атмосферы и вызывая полярные сияния.

Рис. 7. Каплевидная форма магнитосферы Земли

Географическое значение магнитосферы очень велико: она защищает Землю от корпускулярного солнечного и космического излучения. С магнитными аномалиями связан поиск полезных ископаемых. Магнитные силовые линии помогают ориентироваться в пространстве туристам, кораблям.

3.4. Возраст Земли. Геохронология

Геохронология – обозначение времени и последовательности образования горных пород. Если залегание горных пород не нарушено, то каждый слой моложе того, на котором он залегает. Верхний слой образовался позднее всех лежащих ниже.

Для выполнения реконструкции геологической истории Земли необходима информация о событиях и отложениях, которые имели место от момента образования Земли и до наших дней. Так была создана стратиграфическая шкала (лат. stratum – слой, греч. grapho – описываю), которая показывала слоистые осадочные отложения от древних к молодым. В 1881 г. на 2-м Международном геологическом конгрессе в г. Болонье (Италия) стратиграфическая шкала была совмещена с геохронологической, указывающей временные рамки стратиграфических подразделений. На протяжении почти 120 лет после этого геохронологическая шкала дополнялась и уточнялась. Разные авторы называли ее по-разному: универсальная, планетарная, глобальная, международная, хроностратиграфическая, стандартная, единая, типовая. В настоящее время Международная геохронологическая шкала (2012) выглядит следующим образом.

Наиболее крупным подразделением является эон.Выделяют три зона:

? архейский (греч. archios – древнейший): более 3,5–2,6 млрд лет;

? протерозойский (греч. proteros – первичный): 2,6 млрд лет – 570 млн лет;

? фанерозойский (греч. phaneros – явный): 570 – 0 млн лет.

Зоны подразделяются на эры, а они в свою очередь на периодыи эпохи.Иногда в литературе весь период до фанерозоя называют докембрием (кембрий – первый период палеозойской эры) или криптозоем.

Фанерозойский эон подразделяется на эры:

? палеозойскую (греч. palaios – древний, zoe – жизнь) – 6 периодов;
<< 1 2 3 4 5 6 7 8 9 10 11 >>
На страницу:
6 из 11

Другие электронные книги автора Юлия Александровна Гледко